Nuprl Lemma : comparison-test

y:ℕ ⟶ ℝn.y[n]↓  (∀x:ℕ ⟶ ℝ. Σn.x[n]↓ supposing ∀n:ℕ(|x[n]| ≤ y[n])))


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ rleq: x ≤ y rabs: |x| real: nat: uimplies: supposing a so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q less_than': less_than'(a;b) nat: so_lambda: λ2x.t[x] converges: x[n]↓ as n→∞ series-sum: Σn.x[n] a series-converges: Σn.x[n]↓ prop: real: subtype_rel: A ⊆B so_apply: x[s] uall: [x:A]. B[x] false: False not: ¬A and: P ∧ Q le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y member: t ∈ T uimplies: supposing a implies:  Q all: x:A. B[x] cauchy: cauchy(n.x[n]) all-large: large(n).P[n] sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q sq_stable: SqStable(P) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} top: Top rneq: x ≠ y

Latex:
\mforall{}y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (\mSigma{}n.y[n]\mdownarrow{}  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mSigma{}n.x[n]\mdownarrow{}  supposing  \mforall{}n:\mBbbN{}.  (|x[n]|  \mleq{}  y[n])))



Date html generated: 2020_05_20-AM-11_20_37
Last ObjectModification: 2020_03_19-PM-00_43_18

Theory : reals


Home Index