Step
*
of Lemma
continuous-sum
No Annotations
∀I:Interval. ∀n,m:ℤ. ∀f:{n..m + 1-} ⟶ I ⟶ℝ.
((∀i:{n..m + 1-}. f[i;x] continuous for x ∈ I)
⇒ Σ{f[i;x] | n≤i≤m} continuous for x ∈ I)
BY
{ (Auto THEN Assert ⌜∀d:ℕ. (((n + d) ≤ m)
⇒ Σ{f[i;x] | n≤i≤n + d} continuous for x ∈ I)⌝⋅) }
1
.....assertion.....
1. I : Interval
2. n : ℤ
3. m : ℤ
4. f : {n..m + 1-} ⟶ I ⟶ℝ
5. ∀i:{n..m + 1-}. f[i;x] continuous for x ∈ I
⊢ ∀d:ℕ. (((n + d) ≤ m)
⇒ Σ{f[i;x] | n≤i≤n + d} continuous for x ∈ I)
2
1. I : Interval
2. n : ℤ
3. m : ℤ
4. f : {n..m + 1-} ⟶ I ⟶ℝ
5. ∀i:{n..m + 1-}. f[i;x] continuous for x ∈ I
6. ∀d:ℕ. (((n + d) ≤ m)
⇒ Σ{f[i;x] | n≤i≤n + d} continuous for x ∈ I)
⊢ Σ{f[i;x] | n≤i≤m} continuous for x ∈ I
Latex:
Latex:
No Annotations
\mforall{}I:Interval. \mforall{}n,m:\mBbbZ{}. \mforall{}f:\{n..m + 1\msupminus{}\} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}.
((\mforall{}i:\{n..m + 1\msupminus{}\}. f[i;x] continuous for x \mmember{} I) {}\mRightarrow{} \mSigma{}\{f[i;x] | n\mleq{}i\mleq{}m\} continuous for x \mmember{} I)
By
Latex:
(Auto THEN Assert \mkleeneopen{}\mforall{}d:\mBbbN{}. (((n + d) \mleq{} m) {}\mRightarrow{} \mSigma{}\{f[i;x] | n\mleq{}i\mleq{}n + d\} continuous for x \mmember{} I)\mkleeneclose{}\mcdot{})
Home
Index