Step * 1 1 of Lemma converges-iff-cauchy


1. : ℕ ⟶ ℝ
2. : ℝ
3. ∀k:ℕ+(∃N:ℕ [(∀n:ℕ((N ≤ n)  (|x[n] y| ≤ (r1/r(k)))))])
4. : ℕ+
5. : ℕ
6. ∀n:ℕ((N ≤ n)  (|x[n] y| ≤ (r1/r(2 k))))
⊢ ∃N:ℕ [(∀n,m:ℕ.  ((N ≤ n)  (N ≤ m)  (|x[n] x[m]| ≤ (r1/r(k)))))]
BY
((With ⌜N⌝ (D 0)⋅ THENA Auto)⋅ THEN ParallelLast THEN Auto THEN ThinTrivial) }

1
1. : ℕ ⟶ ℝ
2. : ℝ
3. ∀k:ℕ+(∃N:ℕ [(∀n:ℕ((N ≤ n)  (|x[n] y| ≤ (r1/r(k)))))])
4. : ℕ+
5. : ℕ
6. ∀n:ℕ((N ≤ n)  (|x[n] y| ≤ (r1/r(2 k))))
7. : ℕ
8. : ℕ
9. N ≤ n
10. N ≤ m
11. |x[n] y| ≤ (r1/r(2 k))
⊢ |x[n] x[m]| ≤ (r1/r(k))


Latex:


Latex:

1.  x  :  \mBbbN{}  {}\mrightarrow{}  \mBbbR{}
2.  y  :  \mBbbR{}
3.  \mforall{}k:\mBbbN{}\msupplus{}.  (\mexists{}N:\mBbbN{}  [(\mforall{}n:\mBbbN{}.  ((N  \mleq{}  n)  {}\mRightarrow{}  (|x[n]  -  y|  \mleq{}  (r1/r(k)))))])
4.  k  :  \mBbbN{}\msupplus{}
5.  N  :  \mBbbN{}
6.  \mforall{}n:\mBbbN{}.  ((N  \mleq{}  n)  {}\mRightarrow{}  (|x[n]  -  y|  \mleq{}  (r1/r(2  *  k))))
\mvdash{}  \mexists{}N:\mBbbN{}  [(\mforall{}n,m:\mBbbN{}.    ((N  \mleq{}  n)  {}\mRightarrow{}  (N  \mleq{}  m)  {}\mRightarrow{}  (|x[n]  -  x[m]|  \mleq{}  (r1/r(k)))))]


By


Latex:
((With  \mkleeneopen{}N\mkleeneclose{}  (D  0)\mcdot{}  THENA  Auto)\mcdot{}  THEN  ParallelLast  THEN  Auto  THEN  ThinTrivial)




Home Index