Nuprl Lemma : converges-to_functionality2
∀x1,x2:ℕ ⟶ ℝ. ∀y1,y2:ℝ.  (lim n→∞.x1[n] = y1 
⇒ lim n→∞.x2[n] = y2) supposing ((y1 = y2) and (∀n:ℕ. (x1[n] = x2[n])))
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
guard: {T}
Lemmas referenced : 
converges-to_functionality
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}x1,x2:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}y1,y2:\mBbbR{}.
    (lim  n\mrightarrow{}\minfty{}.x1[n]  =  y1  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x2[n]  =  y2)  supposing  ((y1  =  y2)  and  (\mforall{}n:\mBbbN{}.  (x1[n]  =  x2[n])))
Date html generated:
2016_05_18-AM-07_35_48
Last ObjectModification:
2015_12_28-AM-00_56_36
Theory : reals
Home
Index