Nuprl Lemma : converges-to_functionality2

x1,x2:ℕ ⟶ ℝ. ∀y1,y2:ℝ.  (lim n→∞.x1[n] y1  lim n→∞.x2[n] y2) supposing ((y1 y2) and (∀n:ℕ(x1[n] x2[n])))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y req: y real: nat: uimplies: supposing a so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  guard: {T}
Lemmas referenced :  converges-to_functionality
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}x1,x2:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}y1,y2:\mBbbR{}.
    (lim  n\mrightarrow{}\minfty{}.x1[n]  =  y1  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x2[n]  =  y2)  supposing  ((y1  =  y2)  and  (\mforall{}n:\mBbbN{}.  (x1[n]  =  x2[n])))



Date html generated: 2016_05_18-AM-07_35_48
Last ObjectModification: 2015_12_28-AM-00_56_36

Theory : reals


Home Index