Nuprl Lemma : cosine-approx-lemma-ext
∀a:{2...}. ∀N:ℕ+.  (∃k:ℕ [(N ≤ (a^((2 * k) + 2) * ((2 * k) + 2)!))])
Proof
Definitions occuring in Statement : 
fact: (n)!
, 
exp: i^n
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
cosine-approx-lemma
Lemmas referenced : 
cosine-approx-lemma
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}a:\{2...\}.  \mforall{}N:\mBbbN{}\msupplus{}.    (\mexists{}k:\mBbbN{}  [(N  \mleq{}  (a\^{}((2  *  k)  +  2)  *  ((2  *  k)  +  2)!))])
Date html generated:
2019_10_29-AM-10_34_03
Last ObjectModification:
2019_02_08-PM-01_39_01
Theory : reals
Home
Index