Step
*
1
of Lemma
countable-Heine-Borel-proper
.....assertion.....
1. a : ℝ
2. b : {b:ℝ| a < b}
3. [C] : ℕ ⟶ {x:ℝ| x ∈ [a, b]} ⟶ ℙ
4. ∀n:ℕ. ∀x:{x:ℝ| x ∈ [a, b]} . ∀y:{y:{x:ℝ| x ∈ [a, b]} | x = y} . (C[n;x]
⇒ C[n;y])
5. ∀x:{x:ℝ| x ∈ [a, b]} . ∃n:ℕ. C[n;x]
6. ∀f:ℕ ⟶ 𝔹. ∃n:ℕ. C[n;cantor-to-interval(a;b;f)]
⊢ ∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. C[n;cantor-to-interval(a;b;f)]
BY
{ ((Assert a ≤ b BY (DVar `b' THEN Unhide THEN Auto)) THEN (Skolemize (-2) `F' ⋅ THENA Auto)) }
1
1. a : ℝ
2. b : {b:ℝ| a < b}
3. [C] : ℕ ⟶ {x:ℝ| x ∈ [a, b]} ⟶ ℙ
4. ∀n:ℕ. ∀x:{x:ℝ| x ∈ [a, b]} . ∀y:{y:{x:ℝ| x ∈ [a, b]} | x = y} . (C[n;x]
⇒ C[n;y])
5. ∀x:{x:ℝ| x ∈ [a, b]} . ∃n:ℕ. C[n;x]
6. ∀f:ℕ ⟶ 𝔹. ∃n:ℕ. C[n;cantor-to-interval(a;b;f)]
7. a ≤ b
8. F : f:(ℕ ⟶ 𝔹) ⟶ ℕ
9. ∀f:ℕ ⟶ 𝔹. C[F f;cantor-to-interval(a;b;f)]
⊢ ∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. C[n;cantor-to-interval(a;b;f)]
Latex:
Latex:
.....assertion.....
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a < b\}
3. [C] : \mBbbN{} {}\mrightarrow{} \{x:\mBbbR{}| x \mmember{} [a, b]\} {}\mrightarrow{} \mBbbP{}
4. \mforall{}n:\mBbbN{}. \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . \mforall{}y:\{y:\{x:\mBbbR{}| x \mmember{} [a, b]\} | x = y\} . (C[n;x] {}\mRightarrow{} C[n;y])
5. \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . \mexists{}n:\mBbbN{}. C[n;x]
6. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}. C[n;cantor-to-interval(a;b;f)]
\mvdash{} \mexists{}k:\mBbbN{}. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}k. C[n;cantor-to-interval(a;b;f)]
By
Latex:
((Assert a \mleq{} b BY (DVar `b' THEN Unhide THEN Auto)) THEN (Skolemize (-2) `F' \mcdot{} THENA Auto))
Home
Index