Step
*
2
1
2
of Lemma
derivative-rnexp
1. n : ℤ
2. 0 < n
3. ∀I:Interval. d(x^n)/dx = λx.r(n) * x^n - 1 on I
4. I : Interval
5. d(x^n * x)/dx = λx.(x^n * r1) + (x * r(n) * x^n - 1) on I
6. x : {x:ℝ| x ∈ I}
⊢ ((x^n * r1) + (x * r(n) * x^n - 1)) = (r(n + 1) * x^(n + 1) - 1)
BY
{ (Subst ⌜(n + 1) - 1 ~ n⌝ 0⋅ THEN Auto) }
1
1. n : ℤ
2. 0 < n
3. ∀I:Interval. d(x^n)/dx = λx.r(n) * x^n - 1 on I
4. I : Interval
5. d(x^n * x)/dx = λx.(x^n * r1) + (x * r(n) * x^n - 1) on I
6. x : {x:ℝ| x ∈ I}
⊢ ((x^n * r1) + (x * r(n) * x^n - 1)) = (r(n + 1) * x^n)
Latex:
Latex:
1. n : \mBbbZ{}
2. 0 < n
3. \mforall{}I:Interval. d(x\^{}n)/dx = \mlambda{}x.r(n) * x\^{}n - 1 on I
4. I : Interval
5. d(x\^{}n * x)/dx = \mlambda{}x.(x\^{}n * r1) + (x * r(n) * x\^{}n - 1) on I
6. x : \{x:\mBbbR{}| x \mmember{} I\}
\mvdash{} ((x\^{}n * r1) + (x * r(n) * x\^{}n - 1)) = (r(n + 1) * x\^{}(n + 1) - 1)
By
Latex:
(Subst \mkleeneopen{}(n + 1) - 1 \msim{} n\mkleeneclose{} 0\mcdot{} THEN Auto)
Home
Index