Step
*
1
2
1
1
of Lemma
dot-product-split
1. n : ℕ
2. k : ℕn
3. x : ℝ^n
4. y : ℝ^n
5. λi.(x (k + i)) ∈ ℝ^n - k
6. λi.(y (k + i)) ∈ ℝ^n - k
7. ¬(k = 0 ∈ ℤ)
8. x⋅y = (x⋅y + Σ{(x i) * (y i) | (k - 1) + 1≤i≤n - 1})
⊢ Σ{(x i) * (y i) | (k - 1) + 1≤i≤n - 1} = λi.(x (k + i))⋅λi.(y (k + i))
BY
{ RepUR ``dot-product`` 0 }
1
1. n : ℕ
2. k : ℕn
3. x : ℝ^n
4. y : ℝ^n
5. λi.(x (k + i)) ∈ ℝ^n - k
6. λi.(y (k + i)) ∈ ℝ^n - k
7. ¬(k = 0 ∈ ℤ)
8. x⋅y = (x⋅y + Σ{(x i) * (y i) | (k - 1) + 1≤i≤n - 1})
⊢ Σ{(x i) * (y i) | (k - 1) + 1≤i≤n - 1} = Σ{(x (k + i)) * (y (k + i)) | 0≤i≤n - k - 1}
Latex:
Latex:
1. n : \mBbbN{}
2. k : \mBbbN{}n
3. x : \mBbbR{}\^{}n
4. y : \mBbbR{}\^{}n
5. \mlambda{}i.(x (k + i)) \mmember{} \mBbbR{}\^{}n - k
6. \mlambda{}i.(y (k + i)) \mmember{} \mBbbR{}\^{}n - k
7. \mneg{}(k = 0)
8. x\mcdot{}y = (x\mcdot{}y + \mSigma{}\{(x i) * (y i) | (k - 1) + 1\mleq{}i\mleq{}n - 1\})
\mvdash{} \mSigma{}\{(x i) * (y i) | (k - 1) + 1\mleq{}i\mleq{}n - 1\} = \mlambda{}i.(x (k + i))\mcdot{}\mlambda{}i.(y (k + i))
By
Latex:
RepUR ``dot-product`` 0
Home
Index