Step
*
1
of Lemma
equiv-metrics-preserve-complete
1. [X] : Type
2. [d1] : metric(X)
3. [d2] : metric(X)
4. c1 : {s:ℝ| r0 < s}
5. c2 : {s:ℝ| r0 < s}
6. c1*d1 ≤ d2
7. c2*d2 ≤ d1
8. mcomplete(X with d1)
9. r0 < (c1 * c2)
10. r0 < (r1/c1 * c2)
⊢ mcomplete(X with d2)
BY
{ ((InstLemma `metric-leq-complete` [⌜X⌝;⌜d1⌝;⌜c2*d2⌝]⋅ THENA Auto)
THENL [((D 0 With ⌜x⌝ THEN Auto)
THENL [(D 0 With ⌜0⌝ THEN Auto)
; (InstLemma `metric-leq-cauchy` [⌜X⌝;⌜d1⌝;⌜c2*d2⌝;⌜(r1/c1 * c2)⌝]⋅ THEN Auto)]
)
; (InstLemma `scale-metric-complete` [⌜X⌝;⌜d2⌝]⋅ THEN Auto)]
) }
1
.....antecedent.....
1. [X] : Type
2. [d1] : metric(X)
3. [d2] : metric(X)
4. c1 : {s:ℝ| r0 < s}
5. c2 : {s:ℝ| r0 < s}
6. c1*d1 ≤ d2
7. c2*d2 ≤ d1
8. mcomplete(X with d1)
9. r0 < (c1 * c2)
10. r0 < (r1/c1 * c2)
11. x : ℕ ⟶ X
12. mcauchy(c2*d2;n.x n)
13. subsequence(a,b.a ≡ b;n.x n;n.x n)
⊢ d1 ≤ (r1/c1 * c2)*c2*d2
Latex:
Latex:
1. [X] : Type
2. [d1] : metric(X)
3. [d2] : metric(X)
4. c1 : \{s:\mBbbR{}| r0 < s\}
5. c2 : \{s:\mBbbR{}| r0 < s\}
6. c1*d1 \mleq{} d2
7. c2*d2 \mleq{} d1
8. mcomplete(X with d1)
9. r0 < (c1 * c2)
10. r0 < (r1/c1 * c2)
\mvdash{} mcomplete(X with d2)
By
Latex:
((InstLemma `metric-leq-complete` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d1\mkleeneclose{};\mkleeneopen{}c2*d2\mkleeneclose{}]\mcdot{} THENA Auto)
THENL [((D 0 With \mkleeneopen{}x\mkleeneclose{} THEN Auto)
THENL [(D 0 With \mkleeneopen{}0\mkleeneclose{} THEN Auto)
; (InstLemma `metric-leq-cauchy` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d1\mkleeneclose{};\mkleeneopen{}c2*d2\mkleeneclose{};\mkleeneopen{}(r1/c1 * c2)\mkleeneclose{}]\mcdot{} THEN Auto)]
)
; (InstLemma `scale-metric-complete` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d2\mkleeneclose{}]\mcdot{} THEN Auto)]
)
Home
Index