Nuprl Lemma : equiv-metrics-preserve-complete
∀[X:Type]. ∀[d1,d2:metric(X)].
  ((∃c1,c2:{s:ℝ| r0 < s} . (c1*d1 ≤ d2 ∧ c2*d2 ≤ d1)) ⇒ (mcomplete(X with d1) ⇐⇒ mcomplete(X with d2)))
Proof
Definitions occuring in Statement : 
mcomplete: mcomplete(M), 
mk-metric-space: X with d, 
metric-leq: d1 ≤ d2, 
scale-metric: c*d, 
metric: metric(X), 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
sq_stable: SqStable(P), 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
cand: A c∧ B, 
prop: ℙ, 
squash: ↓T, 
uimplies: b supposing a, 
rneq: x ≠ y, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
rdiv: (x/y), 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]), 
nat: ℕ, 
le: A ≤ B, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
real: ℝ, 
nat_plus: ℕ+, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
metric: metric(X), 
metric-leq: d1 ≤ d2, 
scale-metric: c*d, 
mdist: mdist(d;x;y), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
sq_stable__rless, 
int-to-real_wf, 
rmul_wf, 
rmul-is-positive, 
rless_wf, 
rmul_preserves_rless, 
rdiv_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
real_wf, 
metric-leq_wf, 
scale-metric_wf, 
subtype_rel_sets_simple, 
rleq_wf, 
rleq_weakening_rless, 
metric_wf, 
istype-universe, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
rinv_wf2, 
rless-int, 
rless_functionality, 
req_transitivity, 
rmul_functionality, 
req_weakening, 
rinv-of-rmul, 
rmul-rinv, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
metric-leq-complete, 
istype-le, 
le_witness_for_triv, 
nat_properties, 
sq_stable__less_than, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
meq-same, 
meq_wf, 
metric-leq-cauchy, 
subsequence_wf, 
istype-nat, 
mcauchy_wf, 
scale-metric-complete, 
sq_stable__rleq, 
mdist_wf, 
rmul_preserves_rleq, 
rleq_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
setElimination, 
rename, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
inlFormation_alt, 
sqequalRule, 
productIsType, 
universeIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
independent_isectElimination, 
inrFormation_alt, 
setIsType, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
instantiate, 
universeEquality, 
closedConclusion, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
unionElimination, 
functionIsType, 
isectIsType, 
equalityIstype
Latex:
\mforall{}[X:Type].  \mforall{}[d1,d2:metric(X)].
    ((\mexists{}c1,c2:\{s:\mBbbR{}|  r0  <  s\}  .  (c1*d1  \mleq{}  d2  \mwedge{}  c2*d2  \mleq{}  d1))
    {}\mRightarrow{}  (mcomplete(X  with  d1)  \mLeftarrow{}{}\mRightarrow{}  mcomplete(X  with  d2)))
Date html generated:
2019_10_30-AM-06_49_26
Last ObjectModification:
2019_10_02-AM-11_00_11
Theory : reals
Home
Index