Nuprl Lemma : equiv-metrics-preserve-complete

[X:Type]. ∀[d1,d2:metric(X)].
  ((∃c1,c2:{s:ℝr0 < s} (c1*d1 ≤ d2 ∧ c2*d2 ≤ d1))  (mcomplete(X with d1) ⇐⇒ mcomplete(X with d2)))


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) mk-metric-space: with d metric-leq: d1 ≤ d2 scale-metric: c*d metric: metric(X) rless: x < y int-to-real: r(n) real: uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] all: x:A. B[x] member: t ∈ T sq_stable: SqStable(P) rev_implies:  Q or: P ∨ Q cand: c∧ B prop: squash: T uimplies: supposing a rneq: x ≠ y subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} less_than: a < b less_than': less_than'(a;b) true: True rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]) nat: le: A ≤ B rless: x < y sq_exists: x:A [B[x]] real: nat_plus: + ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] metric: metric(X) metric-leq: d1 ≤ d2 scale-metric: c*d mdist: mdist(d;x;y) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  sq_stable__rless int-to-real_wf rmul_wf rmul-is-positive rless_wf rmul_preserves_rless rdiv_wf mcomplete_wf mk-metric-space_wf real_wf metric-leq_wf scale-metric_wf subtype_rel_sets_simple rleq_wf rleq_weakening_rless metric_wf istype-universe itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf rinv_wf2 rless-int rless_functionality req_transitivity rmul_functionality req_weakening rinv-of-rmul rmul-rinv rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma metric-leq-complete istype-le le_witness_for_triv nat_properties sq_stable__less_than nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf meq-same meq_wf metric-leq-cauchy subsequence_wf istype-nat mcauchy_wf scale-metric-complete sq_stable__rleq mdist_wf rmul_preserves_rleq rleq_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin cut setElimination rename introduction extract_by_obid dependent_functionElimination isectElimination natural_numberEquality hypothesis hypothesisEquality independent_functionElimination inlFormation_alt sqequalRule productIsType universeIsType imageMemberEquality baseClosed imageElimination because_Cache independent_isectElimination inrFormation_alt setIsType applyEquality lambdaEquality_alt inhabitedIsType instantiate universeEquality closedConclusion approximateComputation int_eqEquality isect_memberEquality_alt voidElimination dependent_pairFormation_alt dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry addEquality unionElimination functionIsType isectIsType equalityIstype

Latex:
\mforall{}[X:Type].  \mforall{}[d1,d2:metric(X)].
    ((\mexists{}c1,c2:\{s:\mBbbR{}|  r0  <  s\}  .  (c1*d1  \mleq{}  d2  \mwedge{}  c2*d2  \mleq{}  d1))
    {}\mRightarrow{}  (mcomplete(X  with  d1)  \mLeftarrow{}{}\mRightarrow{}  mcomplete(X  with  d2)))



Date html generated: 2019_10_30-AM-06_49_26
Last ObjectModification: 2019_10_02-AM-11_00_11

Theory : reals


Home Index