Nuprl Lemma : subsequence_wf

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ]. ∀[x,y:ℕ ⟶ T].  (subsequence(a,b.E[a;b];n.x[n];n.y[n]) ∈ ℙ)


Proof




Definitions occuring in Statement :  subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]) nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]) prop: exists: x:A. B[x] all: x:A. B[x] uimplies: supposing a nat: and: P ∧ Q so_apply: x[s1;s2] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  nat_wf le_wf subtype_rel_self istype-nat istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule productEquality extract_by_obid hypothesis functionEquality isectEquality sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality because_Cache applyEquality instantiate axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :functionIsType,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y:\mBbbN{}  {}\mrightarrow{}  T].    (subsequence(a,b.E[a;b];n.x[n];n.y[n])  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_31_48
Last ObjectModification: 2019_04_22-PM-01_48_04

Theory : relations


Home Index