Nuprl Lemma : mk-metric-space_wf
∀[X:Type]. ∀[d:metric(X)].  (X with d ∈ MetricSpace)
Proof
Definitions occuring in Statement : 
mk-metric-space: X with d
, 
metric-space: MetricSpace
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk-metric-space: X with d
, 
metric-space: MetricSpace
Lemmas referenced : 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependent_pairEquality_alt, 
hypothesisEquality, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (X  with  d  \mmember{}  MetricSpace)
Date html generated:
2019_10_29-AM-11_08_52
Last ObjectModification:
2019_10_02-AM-09_50_05
Theory : reals
Home
Index