Nuprl Lemma : mk-metric-space_wf

[X:Type]. ∀[d:metric(X)].  (X with d ∈ MetricSpace)


Proof




Definitions occuring in Statement :  mk-metric-space: with d metric-space: MetricSpace metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-metric-space: with d metric-space: MetricSpace
Lemmas referenced :  metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_pairEquality_alt hypothesisEquality universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (X  with  d  \mmember{}  MetricSpace)



Date html generated: 2019_10_29-AM-11_08_52
Last ObjectModification: 2019_10_02-AM-09_50_05

Theory : reals


Home Index