Nuprl Lemma : metric_wf
∀[X:Type]. (metric(X) ∈ Type)
Proof
Definitions occuring in Statement : 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
metric: metric(X)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
radd_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
productEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  (metric(X)  \mmember{}  Type)
Date html generated:
2019_10_29-AM-10_50_54
Last ObjectModification:
2019_10_02-AM-09_32_54
Theory : reals
Home
Index