Nuprl Lemma : meq_wf

[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  (x ≡ y ∈ ℙ)


Proof




Definitions occuring in Statement :  meq: x ≡ y metric: metric(X) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T meq: x ≡ y metric: metric(X)
Lemmas referenced :  req_wf int-to-real_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    (x  \mequiv{}  y  \mmember{}  \mBbbP{})



Date html generated: 2019_10_29-AM-10_53_54
Last ObjectModification: 2019_10_02-AM-09_35_29

Theory : reals


Home Index