Nuprl Lemma : meq-same

[X:Type]. ∀[d:metric(X)]. ∀[x:X].  x ≡ x


Proof




Definitions occuring in Statement :  meq: x ≡ y metric: metric(X) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T meq: x ≡ y metric: metric(X) implies:  Q guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x]
Lemmas referenced :  meq-equiv req_witness int-to-real_wf metric_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule applyEquality setElimination rename natural_numberEquality independent_functionElimination universeIsType instantiate universeEquality productElimination dependent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x:X].    x  \mequiv{}  x



Date html generated: 2019_10_29-AM-10_55_14
Last ObjectModification: 2019_10_02-AM-09_36_37

Theory : reals


Home Index