Nuprl Lemma : meq-equiv

[X:Type]. ∀[d:metric(X)].  EquivRel(X;x,y.x ≡ y)


Proof




Definitions occuring in Statement :  meq: x ≡ y metric: metric(X) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T meq: x ≡ y equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] metric: metric(X) sq_stable: SqStable(P) implies:  Q squash: T cand: c∧ B sym: Sym(T;x,y.E[x; y]) prop: trans: Trans(T;x,y.E[x; y]) uimplies: supposing a guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  metric-symmetry sq_stable__req int-to-real_wf req_witness req_wf rleq_antisymmetry metric-nonneg rleq_wf radd_wf metric_wf istype-universe req_functionality req_weakening rleq_functionality_wrt_implies rleq_weakening_equal rleq_functionality radd_functionality rleq_weakening itermSubtract_wf itermAdd_wf itermConstant_wf req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_const_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule independent_pairFormation lambdaFormation_alt applyEquality setElimination rename natural_numberEquality independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination universeIsType because_Cache independent_isectElimination dependent_set_memberEquality_alt productIsType functionIsType inhabitedIsType instantiate universeEquality dependent_functionElimination equalityTransitivity equalitySymmetry approximateComputation lambdaEquality_alt isect_memberEquality_alt voidElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    EquivRel(X;x,y.x  \mequiv{}  y)



Date html generated: 2019_10_29-AM-10_54_54
Last ObjectModification: 2019_10_02-AM-09_36_20

Theory : reals


Home Index