Nuprl Lemma : meq-equiv
∀[X:Type]. ∀[d:metric(X)].  EquivRel(X;x,y.x ≡ y)
Proof
Definitions occuring in Statement : 
meq: x ≡ y
, 
metric: metric(X)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
meq: x ≡ y
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
metric: metric(X)
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
req_int_terms: t1 ≡ t2
, 
top: Top
Lemmas referenced : 
metric-symmetry, 
sq_stable__req, 
int-to-real_wf, 
req_witness, 
req_wf, 
rleq_antisymmetry, 
metric-nonneg, 
rleq_wf, 
radd_wf, 
metric_wf, 
istype-universe, 
req_functionality, 
req_weakening, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_functionality, 
radd_functionality, 
rleq_weakening, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_const_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation_alt, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
productIsType, 
functionIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
approximateComputation, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    EquivRel(X;x,y.x  \mequiv{}  y)
Date html generated:
2019_10_29-AM-10_54_54
Last ObjectModification:
2019_10_02-AM-09_36_20
Theory : reals
Home
Index