Nuprl Lemma : metric-nonneg

[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  (r0 ≤ (d y))


Proof




Definitions occuring in Statement :  metric: metric(X) rleq: x ≤ y int-to-real: r(n) uall: [x:A]. B[x] apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T metric: metric(X) sq_stable: SqStable(P) implies:  Q and: P ∧ Q squash: T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b less_than': less_than'(a;b) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top false: False not: ¬A
Lemmas referenced :  sq_stable__rleq int-to-real_wf le_witness_for_triv metric_wf istype-universe radd_wf rmul_preserves_rleq rless-int rmul_wf itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf rleq-implies-rleq rsub_wf itermAdd_wf req-iff-rsub-is-0 rleq_functionality req_weakening real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination natural_numberEquality hypothesis applyEquality hypothesisEquality independent_functionElimination productElimination sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality_alt dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate universeEquality because_Cache independent_pairFormation approximateComputation voidElimination int_eqEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    (r0  \mleq{}  (d  x  y))



Date html generated: 2019_10_29-AM-10_52_55
Last ObjectModification: 2019_10_02-AM-09_34_38

Theory : reals


Home Index