Nuprl Lemma : metric-nonneg
∀[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  (r0 ≤ (d x y))
Proof
Definitions occuring in Statement : 
metric: metric(X)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
metric: metric(X)
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
squash: ↓T
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
false: False
, 
not: ¬A
Lemmas referenced : 
sq_stable__rleq, 
int-to-real_wf, 
le_witness_for_triv, 
metric_wf, 
istype-universe, 
radd_wf, 
rmul_preserves_rleq, 
rless-int, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
rleq-implies-rleq, 
rsub_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
rleq_functionality, 
req_weakening, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality_alt, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
universeEquality, 
because_Cache, 
independent_pairFormation, 
approximateComputation, 
voidElimination, 
int_eqEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    (r0  \mleq{}  (d  x  y))
Date html generated:
2019_10_29-AM-10_52_55
Last ObjectModification:
2019_10_02-AM-09_34_38
Theory : reals
Home
Index