Nuprl Lemma : scale-metric-complete
∀[X:Type]. ∀[d:metric(X)].  ∀c:{c:ℝ| r0 < c} . (mcomplete(X with d) 
⇐⇒ mcomplete(X with c*d))
Proof
Definitions occuring in Statement : 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
scale-metric: c*d
, 
metric: metric(X)
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
rev_implies: P 
⇐ Q
, 
mconverges: x[n]↓ as n→∞
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
metric: metric(X)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
scale-metric-cauchy, 
scale-metric-converges, 
mconverges-to_wf, 
scale-metric_wf, 
istype-nat, 
mcauchy_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
subtype_rel_sets_simple, 
real_wf, 
rless_wf, 
int-to-real_wf, 
rleq_wf, 
rleq_weakening_rless, 
metric_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation_alt, 
universeIsType, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
natural_numberEquality, 
independent_isectElimination, 
setIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    \mforall{}c:\{c:\mBbbR{}|  r0  <  c\}  .  (mcomplete(X  with  d)  \mLeftarrow{}{}\mRightarrow{}  mcomplete(X  with  c*d))
Date html generated:
2019_10_30-AM-06_45_37
Last ObjectModification:
2019_10_02-AM-10_57_26
Theory : reals
Home
Index