Nuprl Lemma : scale-metric-cauchy

[X:Type]. ∀[d:metric(X)].  ∀c:{c:ℝr0 < c} . ∀x:ℕ ⟶ X.  (mcauchy(d;n.x n) ⇐⇒ mcauchy(c*d;n.x n))


Proof




Definitions occuring in Statement :  mcauchy: mcauchy(d;n.x[n]) scale-metric: c*d metric: metric(X) rless: x < y int-to-real: r(n) real: nat: uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q subtype_rel: A ⊆B metric-leq: d1 ≤ d2 uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B metric: metric(X) so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q rneq: x ≠ y guard: {T} or: P ∨ Q sq_stable: SqStable(P) squash: T less_than: a < b less_than': less_than'(a;b) true: True rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top scale-metric: c*d mdist: mdist(d;x;y) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  metric-leq-cauchy scale-metric_wf rleq_weakening_equal mdist_wf le_witness_for_triv mcauchy_wf istype-nat rdiv_wf int-to-real_wf sq_stable__rless rless_wf subtype_rel_sets_simple real_wf rleq_wf rleq_weakening_rless metric_wf istype-universe rmul_preserves_rless rmul_wf itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf rinv_wf2 rless-int rless_functionality req_transitivity rmul-rinv req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma rleq_functionality req_weakening rmul_functionality
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt independent_pairFormation applyEquality because_Cache sqequalRule dependent_functionElimination independent_functionElimination independent_isectElimination lambdaEquality_alt productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType universeIsType setElimination rename dependent_set_memberEquality_alt closedConclusion natural_numberEquality inrFormation_alt imageMemberEquality baseClosed imageElimination functionIsType setIsType instantiate universeEquality approximateComputation int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    \mforall{}c:\{c:\mBbbR{}|  r0  <  c\}  .  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  X.    (mcauchy(d;n.x  n)  \mLeftarrow{}{}\mRightarrow{}  mcauchy(c*d;n.x  n))



Date html generated: 2019_10_30-AM-06_44_55
Last ObjectModification: 2019_10_02-AM-10_56_50

Theory : reals


Home Index