Step
*
1
2
1
of Lemma
extensional-real-to-bool-constant
1. f : ℝ ⟶ 𝔹
2. ∀x,y:ℝ. ((x = y)
⇒ f x = f y)
3. x : ℝ
4. y : ℝ
5. ¬f x = f y
6. ¬(x < y)
7. y < x
⊢ False
BY
{ (RenameVar `a' 3
THEN RenameVar `b' 4
THEN (InstLemma `extensional-discrete-real-fun-is-constant` [⌜b⌝;⌜a⌝;⌜λ2x.if f x then 0 else 1 fi ⌝]⋅ THENA Auto)) }
1
1. f : ℝ ⟶ 𝔹
2. ∀x,y:ℝ. ((x = y)
⇒ f x = f y)
3. a : ℝ
4. b : ℝ
5. ¬f a = f b
6. ¬(a < b)
7. b < a
8. x : {x:ℝ| x ∈ [b, a]}
9. y : {x:ℝ| x ∈ [b, a]}
10. x = y
⊢ if f x then 0 else 1 fi = if f y then 0 else 1 fi ∈ ℤ
2
1. f : ℝ ⟶ 𝔹
2. ∀x,y:ℝ. ((x = y)
⇒ f x = f y)
3. a : ℝ
4. b : ℝ
5. ¬f a = f b
6. ¬(a < b)
7. b < a
8. ∀x,y:{x:ℝ| x ∈ [b, a]} . (if f x then 0 else 1 fi = if f y then 0 else 1 fi ∈ ℤ)
⊢ False
Latex:
Latex:
1. f : \mBbbR{} {}\mrightarrow{} \mBbbB{}
2. \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} f x = f y)
3. x : \mBbbR{}
4. y : \mBbbR{}
5. \mneg{}f x = f y
6. \mneg{}(x < y)
7. y < x
\mvdash{} False
By
Latex:
(RenameVar `a' 3
THEN RenameVar `b' 4
THEN (InstLemma `extensional-discrete-real-fun-is-constant` [\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.if f x then 0 else 1 fi \mkleeneclose{}
]\mcdot{}
THENA Auto
))
Home
Index