Step
*
1
1
of Lemma
finite-subcover-implies-m-TB
1. [X] : Type
2. d : metric(X)
3. ∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ]. (m-open-cover(X;d;I;i,x.A[i;x])
⇒ (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x]))
4. k : ℕ
⊢ m-open-cover(X;d;X;x,y.mdist(d;x;y) < (r1/r(k + 1)))
BY
{ (D 0 THEN Auto) }
1
1. [X] : Type
2. d : metric(X)
3. ∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ]. (m-open-cover(X;d;I;i,x.A[i;x])
⇒ (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x]))
4. k : ℕ
5. x : X
⊢ m-open(X;d;y.mdist(d;x;y) < (r1/r(k + 1)))
2
1. [X] : Type
2. d : metric(X)
3. ∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ]. (m-open-cover(X;d;I;i,x.A[i;x])
⇒ (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x]))
4. k : ℕ
5. y : X
⊢ ∃x:X. (mdist(d;x;y) < (r1/r(k + 1)))
Latex:
Latex:
1. [X] : Type
2. d : metric(X)
3. \mforall{}[I:Type]. \mforall{}[A:I {}\mrightarrow{} X {}\mrightarrow{} \mBbbP{}].
(m-open-cover(X;d;I;i,x.A[i;x]) {}\mRightarrow{} (\mexists{}n:\mBbbN{}\msupplus{}. \mexists{}L:\mBbbN{}n {}\mrightarrow{} I. \mforall{}x:X. \mexists{}j:\mBbbN{}n. A[L j;x]))
4. k : \mBbbN{}
\mvdash{} m-open-cover(X;d;X;x,y.mdist(d;x;y) < (r1/r(k + 1)))
By
Latex:
(D 0 THEN Auto)
Home
Index