Nuprl Lemma : fun-comparison-test

I:Interval. ∀f,g:ℕ ⟶ I ⟶ℝ.
  n.g[n;x]↓ for x ∈  (∀n:ℕ. ∀x:{x:ℝx ∈ I} .  (|f[n;x]| ≤ g[n;x]))  Σn.f[n;x]↓ for x ∈ I)


Proof




Definitions occuring in Statement :  fun-series-converges: Σn.f[n; x]↓ for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rleq: x ≤ y rabs: |x| real: nat: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q fun-series-converges: Σn.f[n; x]↓ for x ∈ I member: t ∈ T so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtype_rel: A ⊆B so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q fun-cauchy: λn.f[n; x] is cauchy for x ∈ I label: ...$L... t all-large: large(n).P[n] nat_plus: + rneq: x ≠ y guard: {T} int_upper: {i...} sq_stable: SqStable(P) top: Top true: True less_than': less_than'(a;b) subtract: m uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y req_int_terms: t1 ≡ t2 rdiv: (x/y)

Latex:
\mforall{}I:Interval.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.
    (\mSigma{}n.g[n;x]\mdownarrow{}  for  x  \mmember{}  I  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    (|f[n;x]|  \mleq{}  g[n;x]))  {}\mRightarrow{}  \mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I)



Date html generated: 2020_05_20-PM-01_06_13
Last ObjectModification: 2020_01_08-AM-10_41_44

Theory : reals


Home Index