Step
*
1
of Lemma
fun-converges-converges-to
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. g : I ⟶ℝ
4. ∀x:{x:ℝ| x ∈ I} . lim n→∞.f[n;x] = g[x]
5. h : I ⟶ℝ
6. lim n→∞.f[n;x] = λy.h y for x ∈ I
7. x : {x:ℝ| x ∈ I}
⊢ (h x) = g[x]
BY
{ ((D -4 With ⌜x⌝ THENA Auto)
THEN (FLemma `fun-converges-to-pointwise` [-3] THENA Auto)
THEN (InstHyp [⌜x⌝] (-1)⋅ THENA Auto)) }
1
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. g : I ⟶ℝ
4. h : I ⟶ℝ
5. lim n→∞.f[n;x] = λy.h y for x ∈ I
6. x : {x:ℝ| x ∈ I}
7. lim n→∞.f[n;x] = g[x]
8. ∀x:ℝ. ((x ∈ I)
⇒ lim n→∞.f[n;x] = h x)
9. lim n→∞.f[n;x] = h x
⊢ (h x) = g[x]
Latex:
Latex:
1. I : Interval
2. f : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
3. g : I {}\mrightarrow{}\mBbbR{}
4. \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . lim n\mrightarrow{}\minfty{}.f[n;x] = g[x]
5. h : I {}\mrightarrow{}\mBbbR{}
6. lim n\mrightarrow{}\minfty{}.f[n;x] = \mlambda{}y.h y for x \mmember{} I
7. x : \{x:\mBbbR{}| x \mmember{} I\}
\mvdash{} (h x) = g[x]
By
Latex:
((D -4 With \mkleeneopen{}x\mkleeneclose{} THENA Auto)
THEN (FLemma `fun-converges-to-pointwise` [-3] THENA Auto)
THEN (InstHyp [\mkleeneopen{}x\mkleeneclose{}] (-1)\mcdot{} THENA Auto))
Home
Index