Nuprl Lemma : fun-ratio-test
∀I:Interval. ∀f:ℕ ⟶ I ⟶ℝ.
((∀n:ℕ. f[n;x] continuous for x ∈ I)
⇒ (∀m:{m:ℕ+| icompact(i-approx(I;m))}
∃c:ℝ. ((r0 ≤ c) ∧ (c < r1) ∧ (∃N:ℕ. ∀n:{N...}. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . (|f[n + 1;x]| ≤ (c * |f[n;x]|)))))
⇒ Σn.f[n;x]↓ absolutely for x ∈ I)
Proof
Definitions occuring in Statement :
fun-series-converges-absolutely: Σn.f[n; x]↓ absolutely for x ∈ I
,
continuous: f[x] continuous for x ∈ I
,
icompact: icompact(I)
,
rfun: I ⟶ℝ
,
i-approx: i-approx(I;n)
,
i-member: r ∈ I
,
interval: Interval
,
rleq: x ≤ y
,
rless: x < y
,
rabs: |x|
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
int_upper: {i...}
,
nat_plus: ℕ+
,
nat: ℕ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
fun-series-converges-absolutely: Σn.f[n; x]↓ absolutely for x ∈ I
,
fun-series-converges: Σn.f[n; x]↓ for x ∈ I
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
rfun: I ⟶ℝ
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s1;s2]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
sq_stable: SqStable(P)
,
nat_plus: ℕ+
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
int_upper: {i...}
,
label: ...$L... t
,
cand: A c∧ B
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
top: Top
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
req_int_terms: t1 ≡ t2
,
guard: {T}
,
sq_type: SQType(T)
,
nequal: a ≠ b ∈ T
,
assert: ↑b
,
bnot: ¬bb
,
bfalse: ff
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
it: ⋅
,
unit: Unit
,
bool: 𝔹
,
real: ℝ
,
rge: x ≥ y
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
rabs: |x|
,
less_than': less_than'(a;b)
,
rneq: x ≠ y
,
series-converges: Σn.x[n]↓
,
series-sum: Σn.x[n] = a
,
converges: x[n]↓ as n→∞
,
rfun-eq: rfun-eq(I;f;g)
,
r-ap: f(x)
,
pointwise-req: x[k] = y[k] for k ∈ [n,m]
,
subtract: n - m
Latex:
\mforall{}I:Interval. \mforall{}f:\mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}.
((\mforall{}n:\mBbbN{}. f[n;x] continuous for x \mmember{} I)
{}\mRightarrow{} (\mforall{}m:\{m:\mBbbN{}\msupplus{}| icompact(i-approx(I;m))\}
\mexists{}c:\mBbbR{}
((r0 \mleq{} c)
\mwedge{} (c < r1)
\mwedge{} (\mexists{}N:\mBbbN{}. \mforall{}n:\{N...\}. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;m)\} . (|f[n + 1;x]| \mleq{} (c * |f[n;x]|)))))
{}\mRightarrow{} \mSigma{}n.f[n;x]\mdownarrow{} absolutely for x \mmember{} I)
Date html generated:
2020_05_20-PM-01_06_42
Last ObjectModification:
2020_01_01-PM-02_27_21
Theory : reals
Home
Index