Step
*
of Lemma
geometric-series-converges-ext
∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . Σn.c^n = (r1/r1 - c)
BY
{ Extract of Obid: geometric-series-converges
not unfolding absval int-to-real rminus radd rmul rdiv mu mu-ge rlessw exp-ratio
finishing with Auto
normalizes to:
λc,k. eval n = rlessw(r0;(r1 + -(c)) * (r1/r(k))) in
eval x1 = rlessw(λn.|c n|;r1) in
exp-ratio(|c x1| + (r1 x1);4 * x1;0;n + 1;1) }
Latex:
Latex:
\mforall{}c:\{c:\mBbbR{}| (r0 \mleq{} c) \mwedge{} (c < r1)\} . \mSigma{}n.c\^{}n = (r1/r1 - c)
By
Latex:
Extract of Obid: geometric-series-converges
not unfolding absval int-to-real rminus radd rmul rdiv mu mu-ge rlessw exp-ratio
finishing with Auto
normalizes to:
\mlambda{}c,k. eval n = rlessw(r0;(r1 + -(c)) * (r1/r(k))) in
eval x1 = rlessw(\mlambda{}n.|c n|;r1) in
exp-ratio(|c x1| + (r1 x1);4 * x1;0;n + 1;1)
Home
Index