Nuprl Lemma : geometric-series-converges-ext
∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . Σn.c^n = (r1/r1 - c)
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a, 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
rnexp: x^k1, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
squash: ↓T, 
or: P ∨ Q, 
guard: {T}, 
prop: ℙ, 
has-value: (a)↓, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
strict4: strict4(F), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2;s3;s4], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
uall: ∀[x:A]. B[x], 
sq_stable__rless, 
rless_functionality, 
rnexp-converges-ext, 
small-reciprocal-real, 
geometric-series-converges, 
rsub: x - y, 
member: t ∈ T
Lemmas referenced : 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
strict4-spread, 
lifting-strict-callbyvalue, 
geometric-series-converges, 
sq_stable__rless, 
rless_functionality, 
rnexp-converges-ext, 
small-reciprocal-real
Rules used in proof : 
inlFormation, 
imageElimination, 
imageMemberEquality, 
inrFormation, 
applyExceptionCases, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueApply, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}c:\{c:\mBbbR{}|  (r0  \mleq{}  c)  \mwedge{}  (c  <  r1)\}  .  \mSigma{}n.c\^{}n  =  (r1/r1  -  c)
 Date html generated: 
2018_05_22-PM-02_03_25
 Last ObjectModification: 
2018_05_21-AM-00_16_06
Theory : reals
Home
Index