Nuprl Lemma : geometric-series-converges-ext

c:{c:ℝ(r0 ≤ c) ∧ (c < r1)} . Σn.c^n (r1/r1 c)


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a rdiv: (x/y) rleq: x ≤ y rless: x < y rnexp: x^k1 rsub: y int-to-real: r(n) real: all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  squash: T or: P ∨ Q guard: {T} prop: has-value: (a)↓ implies:  Q all: x:A. B[x] and: P ∧ Q strict4: strict4(F) so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] sq_stable__rless rless_functionality rnexp-converges-ext small-reciprocal-real geometric-series-converges rsub: y member: t ∈ T
Lemmas referenced :  is-exception_wf base_wf has-value_wf_base strict4-spread lifting-strict-callbyvalue geometric-series-converges sq_stable__rless rless_functionality rnexp-converges-ext small-reciprocal-real
Rules used in proof :  inlFormation imageElimination imageMemberEquality inrFormation applyExceptionCases hypothesisEquality closedConclusion baseApply callbyvalueApply lambdaFormation independent_pairFormation independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}c:\{c:\mBbbR{}|  (r0  \mleq{}  c)  \mwedge{}  (c  <  r1)\}  .  \mSigma{}n.c\^{}n  =  (r1/r1  -  c)



Date html generated: 2018_05_22-PM-02_03_25
Last ObjectModification: 2018_05_21-AM-00_16_06

Theory : reals


Home Index