Nuprl Lemma : rnexp-converges-ext
∀x:ℝ. ((|x| < r1) ⇒ lim n→∞.x^n = r0)
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y, 
rless: x < y, 
rabs: |x|, 
rnexp: x^k1, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2;s3;s4], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
uall: ∀[x:A]. B[x], 
rationals-dense-ext, 
rnexp-converges, 
reg-seq-mul: reg-seq-mul(x;y), 
bnot: ¬bb, 
le_int: i ≤z j, 
canonical-bound: canonical-bound(r), 
imax: imax(a;b), 
reg-seq-adjust: reg-seq-adjust(n;x), 
reg-seq-inv: reg-seq-inv(x), 
accelerate: accelerate(k;f), 
eq_int: (i =z j), 
bfalse: ff, 
it: ⋅, 
btrue: tt, 
lt_int: i <z j, 
ifthenelse: if b then t else f fi , 
mu-ge: mu-ge(f;n), 
rinv: rinv(x), 
rmul: a * b, 
rdiv: (x/y), 
rabs: |x|, 
member: t ∈ T
Lemmas referenced : 
strict4-spread, 
lifting-strict-callbyvalue, 
rnexp-converges, 
rationals-dense-ext
Rules used in proof : 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\mBbbR{}.  ((|x|  <  r1)  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x\^{}n  =  r0)
Date html generated:
2018_05_22-PM-01_51_16
Last ObjectModification:
2018_05_21-AM-00_09_47
Theory : reals
Home
Index