Nuprl Lemma : rationals-dense-ext

x:ℝ. ∀y:{y:ℝx < y} .  ∃n:ℕ+. ∃m:ℤ((x < (r(m)/r(n))) ∧ ((r(m)/r(n)) < y))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  int:
Definitions unfolded in proof :  sq_stable__rless sq_stable__and rationals-dense member: t ∈ T
Lemmas referenced :  rationals-dense sq_stable__rless sq_stable__and
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  <  y\}  .    \mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}m:\mBbbZ{}.  ((x  <  (r(m)/r(n)))  \mwedge{}  ((r(m)/r(n))  <  y))



Date html generated: 2018_05_22-PM-01_50_11
Last ObjectModification: 2018_05_21-AM-00_08_33

Theory : reals


Home Index