Nuprl Lemma : rationals-dense-ext
∀x:ℝ. ∀y:{y:ℝ| x < y} .  ∃n:ℕ+. ∃m:ℤ. ((x < (r(m)/r(n))) ∧ ((r(m)/r(n)) < y))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
Definitions unfolded in proof : 
sq_stable__rless, 
sq_stable__and, 
rationals-dense, 
member: t ∈ T
Lemmas referenced : 
rationals-dense, 
sq_stable__rless, 
sq_stable__and
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  <  y\}  .    \mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}m:\mBbbZ{}.  ((x  <  (r(m)/r(n)))  \mwedge{}  ((r(m)/r(n))  <  y))
Date html generated:
2018_05_22-PM-01_50_11
Last ObjectModification:
2018_05_21-AM-00_08_33
Theory : reals
Home
Index