Step
*
1
1
of Lemma
has-minimum-maps-compact
1. I : Interval
2. l : ℝ
3. f : I ⟶ℝ
4. ∀x,y:{t:ℝ| t ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
5. ∀x:{t:ℝ| t ∈ I} . (l < f[x])
6. ∀a:{a:ℝ| a ∈ I} . ∀b:{b:ℝ| (b ∈ I) ∧ (a ≤ b)} . ∃c:{t:ℝ| t ∈ [a, b]} . ∀x:{t:ℝ| t ∈ [a, b]} . (f[c] ≤ f[x])
7. n : {n:ℕ+| icompact(i-approx(I;n))}
⊢ ∃m:{m:ℕ+| icompact(i-approx((l, ∞);m))} . ∀x:{x:ℝ| x ∈ i-approx(I;n)} . (f[x] ∈ i-approx((l, ∞);m))
BY
{ ((Assert icompact(i-approx(I;n)) BY (D -1 THEN Unhide THEN Auto)) THEN D -2 THEN Thin (-2)) }
1
1. I : Interval
2. l : ℝ
3. f : I ⟶ℝ
4. ∀x,y:{t:ℝ| t ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
5. ∀x:{t:ℝ| t ∈ I} . (l < f[x])
6. ∀a:{a:ℝ| a ∈ I} . ∀b:{b:ℝ| (b ∈ I) ∧ (a ≤ b)} . ∃c:{t:ℝ| t ∈ [a, b]} . ∀x:{t:ℝ| t ∈ [a, b]} . (f[c] ≤ f[x])
7. n : ℕ+
8. icompact(i-approx(I;n))
⊢ ∃m:{m:ℕ+| icompact(i-approx((l, ∞);m))} . ∀x:{x:ℝ| x ∈ i-approx(I;n)} . (f[x] ∈ i-approx((l, ∞);m))
Latex:
Latex:
1. I : Interval
2. l : \mBbbR{}
3. f : I {}\mrightarrow{}\mBbbR{}
4. \mforall{}x,y:\{t:\mBbbR{}| t \mmember{} I\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
5. \mforall{}x:\{t:\mBbbR{}| t \mmember{} I\} . (l < f[x])
6. \mforall{}a:\{a:\mBbbR{}| a \mmember{} I\} . \mforall{}b:\{b:\mBbbR{}| (b \mmember{} I) \mwedge{} (a \mleq{} b)\} .
\mexists{}c:\{t:\mBbbR{}| t \mmember{} [a, b]\} . \mforall{}x:\{t:\mBbbR{}| t \mmember{} [a, b]\} . (f[c] \mleq{} f[x])
7. n : \{n:\mBbbN{}\msupplus{}| icompact(i-approx(I;n))\}
\mvdash{} \mexists{}m:\{m:\mBbbN{}\msupplus{}| icompact(i-approx((l, \minfty{});m))\} . \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;n)\} . (f[x] \mmember{} i-approx((l, \minfty{});m)\000C)
By
Latex:
((Assert icompact(i-approx(I;n)) BY (D -1 THEN Unhide THEN Auto)) THEN D -2 THEN Thin (-2))
Home
Index