Nuprl Lemma : has-minimum-maps-compact
∀I:Interval. ∀l:ℝ. ∀f:I ⟶ℝ.
  ((∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ (f[x] = f[y])))
  
⇒ (∀x:{t:ℝ| t ∈ I} . (l < f[x]))
  
⇒ (∀a:{a:ℝ| a ∈ I} . ∀b:{b:ℝ| (b ∈ I) ∧ (a ≤ b)} .  ∃c:{t:ℝ| t ∈ [a, b]} . ∀x:{t:ℝ| t ∈ [a, b]} . (f[c] ≤ f[x]))
  
⇒ maps-compact(I;(l, ∞);x.f[x]))
Proof
Definitions occuring in Statement : 
maps-compact: maps-compact(I;J;x.f[x])
, 
rfun: I ⟶ℝ
, 
roiint: (l, ∞)
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
interval: Interval
, 
rleq: x ≤ y
, 
rless: x < y
, 
req: x = y
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
maps-compact: maps-compact(I;J;x.f[x])
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uimplies: b supposing a
, 
subinterval: I ⊆ J 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
ifun: ifun(f;I)
, 
real-fun: real-fun(f;a;b)
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
icompact: icompact(I)
, 
i-nonvoid: i-nonvoid(I)
, 
i-member: r ∈ I
, 
rccint: [l, u]
Lemmas referenced : 
all_wf, 
real_wf, 
i-member_wf, 
rleq_wf, 
exists_wf, 
rccint_wf, 
rless_wf, 
req_wf, 
rfun_wf, 
interval_wf, 
set_wf, 
nat_plus_wf, 
icompact_wf, 
i-approx_wf, 
sq_stable__icompact, 
icompact-is-rccint, 
i-approx-is-subinterval, 
left-endpoint_wf, 
i-approx-finite, 
icompact-endpoints, 
right-endpoint_wf, 
rccint-icompact, 
subinterval_wf, 
equal_wf, 
member_roiint_lemma, 
subtype_rel_sets, 
member_rccint_lemma, 
rleq-range_sup, 
rfun_subtype, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
ifun_wf, 
rleq_weakening_equal, 
rless_transitivity1, 
range_sup_wf, 
i-approx-containing2, 
roiint_wf, 
less_than_wf, 
i-approx-closed, 
i-member-between
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
dependent_functionElimination, 
productElimination, 
applyEquality, 
dependent_set_memberEquality, 
functionEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
natural_numberEquality
Latex:
\mforall{}I:Interval.  \mforall{}l:\mBbbR{}.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}x:\{t:\mBbbR{}|  t  \mmember{}  I\}  .  (l  <  f[x]))
    {}\mRightarrow{}  (\mforall{}a:\{a:\mBbbR{}|  a  \mmember{}  I\}  .  \mforall{}b:\{b:\mBbbR{}|  (b  \mmember{}  I)  \mwedge{}  (a  \mleq{}  b)\}  .
                \mexists{}c:\{t:\mBbbR{}|  t  \mmember{}  [a,  b]\}  .  \mforall{}x:\{t:\mBbbR{}|  t  \mmember{}  [a,  b]\}  .  (f[c]  \mleq{}  f[x]))
    {}\mRightarrow{}  maps-compact(I;(l,  \minfty{});x.f[x]))
Date html generated:
2017_10_03-AM-10_28_03
Last ObjectModification:
2017_07_28-AM-08_11_35
Theory : reals
Home
Index