Nuprl Lemma : has-minimum-maps-compact

I:Interval. ∀l:ℝ. ∀f:I ⟶ℝ.
  ((∀x,y:{t:ℝt ∈ I} .  ((x y)  (f[x] f[y])))
   (∀x:{t:ℝt ∈ I} (l < f[x]))
   (∀a:{a:ℝa ∈ I} . ∀b:{b:ℝ(b ∈ I) ∧ (a ≤ b)} .  ∃c:{t:ℝt ∈ [a, b]} . ∀x:{t:ℝt ∈ [a, b]} (f[c] ≤ f[x]))
   maps-compact(I;(l, ∞);x.f[x]))


Proof




Definitions occuring in Statement :  maps-compact: maps-compact(I;J;x.f[x]) rfun: I ⟶ℝ roiint: (l, ∞) rccint: [l, u] i-member: r ∈ I interval: Interval rleq: x ≤ y rless: x < y req: y real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] rfun: I ⟶ℝ maps-compact: maps-compact(I;J;x.f[x]) sq_stable: SqStable(P) squash: T uimplies: supposing a subinterval: I ⊆  iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] top: Top guard: {T} subtype_rel: A ⊆B ifun: ifun(f;I) real-fun: real-fun(f;a;b) cand: c∧ B nat_plus: + icompact: icompact(I) i-nonvoid: i-nonvoid(I) i-member: r ∈ I rccint: [l, u]
Lemmas referenced :  all_wf real_wf i-member_wf rleq_wf exists_wf rccint_wf rless_wf req_wf rfun_wf interval_wf set_wf nat_plus_wf icompact_wf i-approx_wf sq_stable__icompact icompact-is-rccint i-approx-is-subinterval left-endpoint_wf i-approx-finite icompact-endpoints right-endpoint_wf rccint-icompact subinterval_wf equal_wf member_roiint_lemma subtype_rel_sets member_rccint_lemma rleq-range_sup rfun_subtype left_endpoint_rccint_lemma right_endpoint_rccint_lemma ifun_wf rleq_weakening_equal rless_transitivity1 range_sup_wf i-approx-containing2 roiint_wf less_than_wf i-approx-closed i-member-between
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis hypothesisEquality sqequalRule lambdaEquality setElimination rename because_Cache productEquality dependent_functionElimination productElimination applyEquality dependent_set_memberEquality functionEquality independent_functionElimination imageMemberEquality baseClosed imageElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_pairFormation isect_memberEquality voidElimination voidEquality dependent_pairFormation natural_numberEquality

Latex:
\mforall{}I:Interval.  \mforall{}l:\mBbbR{}.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}x:\{t:\mBbbR{}|  t  \mmember{}  I\}  .  (l  <  f[x]))
    {}\mRightarrow{}  (\mforall{}a:\{a:\mBbbR{}|  a  \mmember{}  I\}  .  \mforall{}b:\{b:\mBbbR{}|  (b  \mmember{}  I)  \mwedge{}  (a  \mleq{}  b)\}  .
                \mexists{}c:\{t:\mBbbR{}|  t  \mmember{}  [a,  b]\}  .  \mforall{}x:\{t:\mBbbR{}|  t  \mmember{}  [a,  b]\}  .  (f[c]  \mleq{}  f[x]))
    {}\mRightarrow{}  maps-compact(I;(l,  \minfty{});x.f[x]))



Date html generated: 2017_10_03-AM-10_28_03
Last ObjectModification: 2017_07_28-AM-08_11_35

Theory : reals


Home Index