Nuprl Lemma : ifun_wf

[I:Interval]. ∀[f:I ⟶ℝ].  ifun(f;I) ∈ ℙ supposing icompact(I)


Proof




Definitions occuring in Statement :  ifun: ifun(f;I) icompact: icompact(I) rfun: I ⟶ℝ interval: Interval uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ifun: ifun(f;I) prop: icompact: icompact(I) and: P ∧ Q
Lemmas referenced :  real-fun_wf left-endpoint_wf right-endpoint_wf icompact_wf rfun_wf interval_wf icompact-is-rccint
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    ifun(f;I)  \mmember{}  \mBbbP{}  supposing  icompact(I)



Date html generated: 2016_10_26-AM-09_47_55
Last ObjectModification: 2016_08_18-PM-02_54_28

Theory : reals


Home Index