Nuprl Lemma : ifun_wf
∀[I:Interval]. ∀[f:I ⟶ℝ].  ifun(f;I) ∈ ℙ supposing icompact(I)
Proof
Definitions occuring in Statement : 
ifun: ifun(f;I)
, 
icompact: icompact(I)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ifun: ifun(f;I)
, 
prop: ℙ
, 
icompact: icompact(I)
, 
and: P ∧ Q
Lemmas referenced : 
real-fun_wf, 
left-endpoint_wf, 
right-endpoint_wf, 
icompact_wf, 
rfun_wf, 
interval_wf, 
icompact-is-rccint
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
productElimination
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    ifun(f;I)  \mmember{}  \mBbbP{}  supposing  icompact(I)
Date html generated:
2016_10_26-AM-09_47_55
Last ObjectModification:
2016_08_18-PM-02_54_28
Theory : reals
Home
Index