Nuprl Lemma : i-approx-closed
∀I:Interval. ∀n:ℕ+.  i-closed(i-approx(I;n))
Proof
Definitions occuring in Statement : 
i-approx: i-approx(I;n), 
i-closed: i-closed(I), 
interval: Interval, 
nat_plus: ℕ+, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
interval: Interval, 
i-approx: i-approx(I;n), 
i-closed: i-closed(I), 
rccint: [l, u], 
isl: isl(x), 
outl: outl(x), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bor: p ∨bq, 
bfalse: ff, 
assert: ↑b, 
and: P ∧ Q, 
cand: A c∧ B, 
true: True, 
member: t ∈ T
Lemmas referenced : 
nat_plus_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
cut, 
natural_numberEquality, 
independent_pairFormation, 
hypothesis, 
because_Cache, 
lemma_by_obid
Latex:
\mforall{}I:Interval.  \mforall{}n:\mBbbN{}\msupplus{}.    i-closed(i-approx(I;n))
Date html generated:
2016_05_18-AM-08_45_52
Last ObjectModification:
2015_12_27-PM-11_48_09
Theory : reals
Home
Index