Nuprl Lemma : i-approx-containing2

I:Interval. ∀a,b:ℝ.  (((a ∈ I) ∧ (b ∈ I))  (∃n:ℕ+((a ∈ i-approx(I;n)) ∧ (b ∈ i-approx(I;n)))))


Proof




Definitions occuring in Statement :  i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q prop: rev_implies:  Q cand: c∧ B exists: x:A. B[x] subinterval: I ⊆  top: Top
Lemmas referenced :  compact-subinterval rccint-icompact rmin_wf rmax_wf rmin-rleq-rmax rccint_wf icompact_wf rcc-subinterval rmin-i-member rmax-i-member rleq_wf and_wf i-member_wf real_wf interval_wf member_rccint_lemma rmin-rleq rleq-rmax i-approx_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid dependent_functionElimination hypothesisEquality isectElimination hypothesis independent_functionElimination dependent_set_memberEquality because_Cache independent_pairFormation dependent_pairFormation setElimination rename sqequalRule isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.    (((a  \mmember{}  I)  \mwedge{}  (b  \mmember{}  I))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  ((a  \mmember{}  i-approx(I;n))  \mwedge{}  (b  \mmember{}  i-approx(I;n)))))



Date html generated: 2016_05_18-AM-08_50_19
Last ObjectModification: 2015_12_27-PM-11_43_48

Theory : reals


Home Index