Nuprl Lemma : i-approx-containing2
∀I:Interval. ∀a,b:ℝ.  (((a ∈ I) ∧ (b ∈ I)) 
⇒ (∃n:ℕ+. ((a ∈ i-approx(I;n)) ∧ (b ∈ i-approx(I;n)))))
Proof
Definitions occuring in Statement : 
i-approx: i-approx(I;n)
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
subinterval: I ⊆ J 
, 
top: Top
Lemmas referenced : 
compact-subinterval, 
rccint-icompact, 
rmin_wf, 
rmax_wf, 
rmin-rleq-rmax, 
rccint_wf, 
icompact_wf, 
rcc-subinterval, 
rmin-i-member, 
rmax-i-member, 
rleq_wf, 
and_wf, 
i-member_wf, 
real_wf, 
interval_wf, 
member_rccint_lemma, 
rmin-rleq, 
rleq-rmax, 
i-approx_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
dependent_set_memberEquality, 
because_Cache, 
independent_pairFormation, 
dependent_pairFormation, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.    (((a  \mmember{}  I)  \mwedge{}  (b  \mmember{}  I))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}\msupplus{}.  ((a  \mmember{}  i-approx(I;n))  \mwedge{}  (b  \mmember{}  i-approx(I;n)))))
Date html generated:
2016_05_18-AM-08_50_19
Last ObjectModification:
2015_12_27-PM-11_43_48
Theory : reals
Home
Index