Nuprl Lemma : homeo-image-boundary

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].
  ∀h:homeomorphic(X;dX;Y;dY)
    ∀[A:Type]
      homeo-image(m-boundary(X;dX;A);Y;dY;h) ≡ m-boundary(Y;dY;homeo-image(A;Y;dY;h)) supposing metric-subspace(X;dX;A) 
    supposing PtwiseCONT(fst(h):X ⟶ Y) ∧ PtwiseCONT(snd(h):Y ⟶ X)


Proof




Definitions occuring in Statement :  homeo-image: homeo-image(A;Y;dY;h) m-ptwise-cont: PtwiseCONT(f:X ⟶ Y) m-boundary: m-boundary(X;d;A) metric-subspace: metric-subspace(X;d;A) homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) all: x:A. B[x] and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a and: P ∧ Q metric-subspace: metric-subspace(X;d;A) uiff: uiff(P;Q) homeomorphic: homeomorphic(X;dX;Y;dY) exists: x:A. B[x] sq_exists: x:A [B[x]] ext-eq: A ≡ B subtype_rel: A ⊆B homeo-image: homeo-image(A;Y;dY;h) pi1: fst(t) m-boundary: m-boundary(X;d;A) mfun: FUN(X ⟶ Y) prop: not: ¬A implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] false: False guard: {T} pi2: snd(t) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q rneq: x ≠ y nat_plus: + m-interior-point: m-interior-point(X;d;A;p) respects-equality: respects-equality(S;T) rev_uimplies: rev_uimplies(P;Q) m-ptwise-cont: PtwiseCONT(f:X ⟶ Y) rless: x < y squash: T is-mfun: f:FUN(X;Y) rge: x ≥ y rgt: x > y

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].
    \mforall{}h:homeomorphic(X;dX;Y;dY)
        \mforall{}[A:Type]
            homeo-image(m-boundary(X;dX;A);Y;dY;h)  \mequiv{}  m-boundary(Y;dY;homeo-image(A;Y;dY;h)) 
            supposing  metric-subspace(X;dX;A) 
        supposing  PtwiseCONT(fst(h):X  {}\mrightarrow{}  Y)  \mwedge{}  PtwiseCONT(snd(h):Y  {}\mrightarrow{}  X)



Date html generated: 2020_05_20-AM-11_52_37
Last ObjectModification: 2020_01_06-PM-00_16_47

Theory : reals


Home Index