Step
*
of Lemma
homeo-image-boundary
No Annotations
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].
∀h:homeomorphic(X;dX;Y;dY)
∀[A:Type]
homeo-image(m-boundary(X;dX;A);Y;dY;h) ≡ m-boundary(Y;dY;homeo-image(A;Y;dY;h)) supposing metric-subspace(X;dX;A)
supposing PtwiseCONT(fst(h):X ⟶ Y) ∧ PtwiseCONT(snd(h):Y ⟶ X)
BY
{ (Auto
THEN DupHyp (-1)
THEN D -1
THEN (RWO "strong-subtype-iff-respects-equality" (-2) THENA Auto)
THEN (Assert h ∈ homeomorphic(X;dX;Y;dY) BY
Declaration)
THEN DVar `h'
THEN DVar `h1'
THEN (RepeatFor 2 (D 0) THENA (Auto THEN Reduce 0 THEN Auto))
THEN D -1
THEN ((DVar `x' THEN Reduce -2 THEN D -2) ORELSE (D -1 THEN Reduce -1 THEN DVar `a'))
THEN (MemTypeCD THEN Auto)
THEN Reduce 0
THEN Auto
THEN Try ((MemTypeCD THEN Reduce 0 THEN Auto))) }
1
1. X : Type
2. Y : Type
3. dX : metric(X)
4. dY : metric(Y)
5. f : FUN(X ⟶ Y)
6. h1 : FUN(Y ⟶ X)
7. ∀x:X. h1 (f x) ≡ x
8. ∀y:Y. f (h1 y) ≡ y
9. PtwiseCONT(fst(<f, h1>):X ⟶ Y)
10. PtwiseCONT(snd(<f, h1>):Y ⟶ X)
11. A : Type
12. metric-subspace(X;dX;A)
13. A ⊆r X
14. respects-equality(X;A)
15. ∀a:A. ∀x:X. (x ≡ a
⇒ (x ∈ A))
16. <f, h1> ∈ homeomorphic(X;dX;Y;dY)
17. x : Y
18. a : A
19. ¬m-interior-point(X;dX;A;a)
20. x ≡ f a
⊢ ¬m-interior-point(Y;dY;homeo-image(A;Y;dY;<f, h1>);x)
2
1. X : Type
2. Y : Type
3. dX : metric(X)
4. dY : metric(Y)
5. f : FUN(X ⟶ Y)
6. h1 : FUN(Y ⟶ X)
7. ∀x:X. h1 (f x) ≡ x
8. ∀y:Y. f (h1 y) ≡ y
9. PtwiseCONT(fst(<f, h1>):X ⟶ Y)
10. PtwiseCONT(snd(<f, h1>):Y ⟶ X)
11. A : Type
12. metric-subspace(X;dX;A)
13. A ⊆r X
14. respects-equality(X;A)
15. ∀a:A. ∀x:X. (x ≡ a
⇒ (x ∈ A))
16. <f, h1> ∈ homeomorphic(X;dX;Y;dY)
17. x : Y
18. a : A
19. x ≡ f a
20. ¬m-interior-point(Y;dY;homeo-image(A;Y;dY;<f, h1>);x)
⊢ ∃a:m-boundary(X;dX;A). x ≡ f a
Latex:
Latex:
No Annotations
\mforall{}[X,Y:Type]. \mforall{}[dX:metric(X)]. \mforall{}[dY:metric(Y)].
\mforall{}h:homeomorphic(X;dX;Y;dY)
\mforall{}[A:Type]
homeo-image(m-boundary(X;dX;A);Y;dY;h) \mequiv{} m-boundary(Y;dY;homeo-image(A;Y;dY;h))
supposing metric-subspace(X;dX;A)
supposing PtwiseCONT(fst(h):X {}\mrightarrow{} Y) \mwedge{} PtwiseCONT(snd(h):Y {}\mrightarrow{} X)
By
Latex:
(Auto
THEN DupHyp (-1)
THEN D -1
THEN (RWO "strong-subtype-iff-respects-equality" (-2) THENA Auto)
THEN (Assert h \mmember{} homeomorphic(X;dX;Y;dY) BY
Declaration)
THEN DVar `h'
THEN DVar `h1'
THEN (RepeatFor 2 (D 0) THENA (Auto THEN Reduce 0 THEN Auto))
THEN D -1
THEN ((DVar `x' THEN Reduce -2 THEN D -2) ORELSE (D -1 THEN Reduce -1 THEN DVar `a'))
THEN (MemTypeCD THEN Auto)
THEN Reduce 0
THEN Auto
THEN Try ((MemTypeCD THEN Reduce 0 THEN Auto)))
Home
Index