Step
*
1
of Lemma
homeo-image-inverse
.....subterm..... T:t
1:n
1. X : Type
2. Y : Type
3. dX : metric(X)
4. dY : metric(Y)
5. h : homeomorphic(X;dX;Y;dY)
6. A : Type
7. A ⊆r X
8. respects-equality(X;A)
9. ∀a:A. ∀x:X. (x ≡ a
⇒ (x ∈ A))
10. x : homeo-image(homeo-image(A;Y;dY;h);X;dX;homeo-inv(h))
⊢ x ∈ A
BY
{ (RepeatFor 2 (D -1)
THEN RepeatFor 2 (D -2)
THEN DVar `h'
THEN RepUR ``homeo-inv`` -1
THEN Reduce -2
THEN RepeatFor 2 (D 6)
THEN DVar `f'
THEN All (Unfold `is-mfun`)
THEN (FHyp 8 [-2] THENA Auto)
THEN RepUR ``so_apply`` -1
THEN Auto
THEN (InstHyp [⌜a@0⌝] 9⋅ THENA Auto)
THEN (Assert a@0 ∈ X BY
Auto)
THEN (Assert x ≡ a@0 BY
(RelRST THEN Auto))) }
1
1. X : Type
2. Y : Type
3. dX : metric(X)
4. dY : metric(Y)
5. f : X ⟶ Y
6. ∀x1,x2:X. (x1 ≡ x2
⇒ f[x1] ≡ f[x2])
7. h1 : Y ⟶ X
8. ∀x1,x2:Y. (x1 ≡ x2
⇒ h1[x1] ≡ h1[x2])
9. ∀x:X. h1 (f x) ≡ x
10. ∀y:Y. f (h1 y) ≡ y
11. A : Type
12. A ⊆r X
13. respects-equality(X;A)
14. ∀a:A. ∀x:X. (x ≡ a
⇒ (x ∈ A))
15. x : X
16. a : Y
17. a@0 : A
18. a ≡ f a@0
19. x ≡ h1 a
20. h1 a ≡ h1 (f a@0)
21. h1 (f a@0) ≡ a@0
22. a@0 ∈ X
23. x ≡ a@0
⊢ x ∈ A
Latex:
Latex:
.....subterm..... T:t
1:n
1. X : Type
2. Y : Type
3. dX : metric(X)
4. dY : metric(Y)
5. h : homeomorphic(X;dX;Y;dY)
6. A : Type
7. A \msubseteq{}r X
8. respects-equality(X;A)
9. \mforall{}a:A. \mforall{}x:X. (x \mequiv{} a {}\mRightarrow{} (x \mmember{} A))
10. x : homeo-image(homeo-image(A;Y;dY;h);X;dX;homeo-inv(h))
\mvdash{} x \mmember{} A
By
Latex:
(RepeatFor 2 (D -1)
THEN RepeatFor 2 (D -2)
THEN DVar `h'
THEN RepUR ``homeo-inv`` -1
THEN Reduce -2
THEN RepeatFor 2 (D 6)
THEN DVar `f'
THEN All (Unfold `is-mfun`)
THEN (FHyp 8 [-2] THENA Auto)
THEN RepUR ``so\_apply`` -1
THEN Auto
THEN (InstHyp [\mkleeneopen{}a@0\mkleeneclose{}] 9\mcdot{} THENA Auto)
THEN (Assert a@0 \mmember{} X BY
Auto)
THEN (Assert x \mequiv{} a@0 BY
(RelRST THEN Auto)))
Home
Index