Step
*
1
1
of Lemma
ifun-iff-continuous
1. I : Interval
2. icompact(I)
3. f : [left-endpoint(I), right-endpoint(I)] ⟶ℝ
4. f[x] continuous for x ∈ [left-endpoint(I), right-endpoint(I)]
5. I ~ [left-endpoint(I), right-endpoint(I)]
⊢ real-fun(λx.f[x];left-endpoint(I);right-endpoint(I))
BY
{ (BLemma `real-fun-iff-continuous` THEN Auto) }
1
1. I : Interval
2. icompact(I)
3. f : [left-endpoint(I), right-endpoint(I)] ⟶ℝ
4. f[x] continuous for x ∈ [left-endpoint(I), right-endpoint(I)]
5. I ~ [left-endpoint(I), right-endpoint(I)]
⊢ left-endpoint(I) ≤ right-endpoint(I)
2
1. I : Interval
2. icompact(I)
3. f : [left-endpoint(I), right-endpoint(I)] ⟶ℝ
4. f[x] continuous for x ∈ [left-endpoint(I), right-endpoint(I)]
5. I ~ [left-endpoint(I), right-endpoint(I)]
⊢ real-cont(λx.f[x];left-endpoint(I);right-endpoint(I))
Latex:
Latex:
1.  I  :  Interval
2.  icompact(I)
3.  f  :  [left-endpoint(I),  right-endpoint(I)]  {}\mrightarrow{}\mBbbR{}
4.  f[x]  continuous  for  x  \mmember{}  [left-endpoint(I),  right-endpoint(I)]
5.  I  \msim{}  [left-endpoint(I),  right-endpoint(I)]
\mvdash{}  real-fun(\mlambda{}x.f[x];left-endpoint(I);right-endpoint(I))
By
Latex:
(BLemma  `real-fun-iff-continuous`  THEN  Auto)
Home
Index