Step
*
1
1
of Lemma
ifun-iff-continuous
1. I : Interval
2. icompact(I)
3. f : [left-endpoint(I), right-endpoint(I)] ⟶ℝ
4. f[x] continuous for x ∈ [left-endpoint(I), right-endpoint(I)]
5. I ~ [left-endpoint(I), right-endpoint(I)]
⊢ real-fun(λx.f[x];left-endpoint(I);right-endpoint(I))
BY
{ (BLemma `real-fun-iff-continuous` THEN Auto) }
1
1. I : Interval
2. icompact(I)
3. f : [left-endpoint(I), right-endpoint(I)] ⟶ℝ
4. f[x] continuous for x ∈ [left-endpoint(I), right-endpoint(I)]
5. I ~ [left-endpoint(I), right-endpoint(I)]
⊢ left-endpoint(I) ≤ right-endpoint(I)
2
1. I : Interval
2. icompact(I)
3. f : [left-endpoint(I), right-endpoint(I)] ⟶ℝ
4. f[x] continuous for x ∈ [left-endpoint(I), right-endpoint(I)]
5. I ~ [left-endpoint(I), right-endpoint(I)]
⊢ real-cont(λx.f[x];left-endpoint(I);right-endpoint(I))
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. f : [left-endpoint(I), right-endpoint(I)] {}\mrightarrow{}\mBbbR{}
4. f[x] continuous for x \mmember{} [left-endpoint(I), right-endpoint(I)]
5. I \msim{} [left-endpoint(I), right-endpoint(I)]
\mvdash{} real-fun(\mlambda{}x.f[x];left-endpoint(I);right-endpoint(I))
By
Latex:
(BLemma `real-fun-iff-continuous` THEN Auto)
Home
Index