Nuprl Lemma : ifun-iff-continuous
∀I:Interval. (icompact(I) ⇒ (∀f:I ⟶ℝ. (ifun(λx.f[x];I) ⇐⇒ f[x] continuous for x ∈ I)))
Proof
Definitions occuring in Statement : 
ifun: ifun(f;I), 
continuous: f[x] continuous for x ∈ I, 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
interval: Interval, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
prop: ℙ, 
so_apply: x[s], 
rfun: I ⟶ℝ, 
rev_implies: P ⇐ Q, 
label: ...$L... t, 
ifun: ifun(f;I), 
top: Top, 
icompact: icompact(I)
Lemmas referenced : 
ifun-continuous, 
ifun_wf, 
real_wf, 
i-member_wf, 
continuous_wf, 
rfun_wf, 
icompact_wf, 
interval_wf, 
icompact-is-rccint, 
left_endpoint_rccint_lemma, 
istype-void, 
right_endpoint_rccint_lemma, 
real-fun-iff-continuous, 
left-endpoint_wf, 
right-endpoint_wf, 
rccint_wf, 
icompact-endpoints-rleq, 
real-cont-iff-continuous
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
dependent_set_memberEquality_alt, 
because_Cache, 
universeIsType, 
isectElimination, 
independent_isectElimination, 
lambdaEquality_alt, 
applyEquality, 
setIsType, 
isect_memberEquality_alt, 
voidElimination, 
productElimination
Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  (ifun(\mlambda{}x.f[x];I)  \mLeftarrow{}{}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I)))
 Date html generated: 
2019_10_30-AM-07_16_51
 Last ObjectModification: 
2019_10_09-PM-06_43_53
Theory : reals
Home
Index