Nuprl Lemma : ifun-continuous

I:Interval. (icompact(I)  (∀f:{f:I ⟶ℝifun(f;I)} f[x] continuous for x ∈ I))


Proof




Definitions occuring in Statement :  ifun: ifun(f;I) continuous: f[x] continuous for x ∈ I icompact: icompact(I) rfun: I ⟶ℝ interval: Interval so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: icompact: icompact(I) and: P ∧ Q i-nonvoid: i-nonvoid(I) exists: x:A. B[x] top: Top guard: {T} so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] subtype_rel: A ⊆B iff: ⇐⇒ Q sq_stable: SqStable(P) squash: T ifun: ifun(f;I) real-fun: real-fun(f;a;b)
Lemmas referenced :  icompact-is-rccint rfun_wf ifun_wf icompact_wf interval_wf member_rccint_lemma istype-void rleq_transitivity left-endpoint_wf right-endpoint_wf real-cont-iff-continuous subtype_rel_self real_wf i-member_wf rccint_wf real-fun-iff-continuous sq_stable__ifun
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis setIsType universeIsType sqequalRule productElimination dependent_functionElimination isect_memberEquality_alt voidElimination because_Cache independent_functionElimination lambdaEquality_alt applyEquality setElimination rename setEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}  .  f[x]  continuous  for  x  \mmember{}  I))



Date html generated: 2019_10_30-AM-07_16_06
Last ObjectModification: 2019_10_09-PM-06_39_22

Theory : reals


Home Index