Nuprl Lemma : ifun-continuous
∀I:Interval. (icompact(I) 
⇒ (∀f:{f:I ⟶ℝ| ifun(f;I)} . f[x] continuous for x ∈ I))
Proof
Definitions occuring in Statement : 
ifun: ifun(f;I)
, 
continuous: f[x] continuous for x ∈ I
, 
icompact: icompact(I)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
icompact: icompact(I)
, 
and: P ∧ Q
, 
i-nonvoid: i-nonvoid(I)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
ifun: ifun(f;I)
, 
real-fun: real-fun(f;a;b)
Lemmas referenced : 
icompact-is-rccint, 
rfun_wf, 
ifun_wf, 
icompact_wf, 
interval_wf, 
member_rccint_lemma, 
istype-void, 
rleq_transitivity, 
left-endpoint_wf, 
right-endpoint_wf, 
real-cont-iff-continuous, 
subtype_rel_self, 
real_wf, 
i-member_wf, 
rccint_wf, 
real-fun-iff-continuous, 
sq_stable__ifun
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
setIsType, 
universeIsType, 
sqequalRule, 
productElimination, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
independent_functionElimination, 
lambdaEquality_alt, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}  .  f[x]  continuous  for  x  \mmember{}  I))
Date html generated:
2019_10_30-AM-07_16_06
Last ObjectModification:
2019_10_09-PM-06_39_22
Theory : reals
Home
Index