Nuprl Lemma : ifun-continuous
∀I:Interval. (icompact(I) ⇒ (∀f:{f:I ⟶ℝ| ifun(f;I)} . f[x] continuous for x ∈ I))
Proof
Definitions occuring in Statement : 
ifun: ifun(f;I), 
continuous: f[x] continuous for x ∈ I, 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
interval: Interval, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
icompact: icompact(I), 
and: P ∧ Q, 
i-nonvoid: i-nonvoid(I), 
exists: ∃x:A. B[x], 
top: Top, 
guard: {T}, 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b)
Lemmas referenced : 
icompact-is-rccint, 
rfun_wf, 
ifun_wf, 
icompact_wf, 
interval_wf, 
member_rccint_lemma, 
istype-void, 
rleq_transitivity, 
left-endpoint_wf, 
right-endpoint_wf, 
real-cont-iff-continuous, 
subtype_rel_self, 
real_wf, 
i-member_wf, 
rccint_wf, 
real-fun-iff-continuous, 
sq_stable__ifun
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
setIsType, 
universeIsType, 
sqequalRule, 
productElimination, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
independent_functionElimination, 
lambdaEquality_alt, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}  .  f[x]  continuous  for  x  \mmember{}  I))
Date html generated:
2019_10_30-AM-07_16_06
Last ObjectModification:
2019_10_09-PM-06_39_22
Theory : reals
Home
Index