Nuprl Lemma : real-cont-iff-continuous

a,b:ℝ.  ((a ≤ b)  (∀f:[a, b] ⟶ℝ(real-cont(f;a;b) ⇐⇒ f[x] continuous for x ∈ [a, b])))


Proof




Definitions occuring in Statement :  real-cont: real-cont(f;a;b) continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y real: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q real-cont: real-cont(f;a;b) continuous: f[x] continuous for x ∈ I member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] exists: x:A. B[x] i-approx: i-approx(I;n) rccint: [l, u] top: Top sq_exists: x:A [B[x]] cand: c∧ B sq_stable: SqStable(P) squash: T rev_uimplies: rev_uimplies(P;Q) nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q rless: x < y decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False rge: x ≥ y uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B
Lemmas referenced :  nat_plus_wf icompact_wf i-approx_wf rccint_wf real-cont_wf continuous_wf i-member_wf rfun_wf rleq_wf real_wf member_rccint_lemma istype-void sq_stable__rless int-to-real_wf rleq_functionality_wrt_implies rabs_wf rsub_wf rdiv_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rleq_weakening_equal rleq_weakening itermSubtract_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma istype-less_than rccint-icompact sq_stable__rleq le_witness_for_triv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation sqequalHypSubstitution universeIsType cut introduction extract_by_obid hypothesis setIsType isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType dependent_functionElimination productElimination isect_memberEquality_alt voidElimination dependent_set_memberFormation_alt setElimination rename natural_numberEquality independent_functionElimination imageMemberEquality baseClosed imageElimination because_Cache dependent_set_memberEquality_alt productIsType closedConclusion independent_isectElimination inrFormation_alt unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality equalityTransitivity equalitySymmetry functionIsType functionIsTypeImplies

Latex:
\mforall{}a,b:\mBbbR{}.    ((a  \mleq{}  b)  {}\mRightarrow{}  (\mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  (real-cont(f;a;b)  \mLeftarrow{}{}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  [a,  b])))



Date html generated: 2019_10_30-AM-07_15_43
Last ObjectModification: 2019_10_09-PM-06_37_59

Theory : reals


Home Index