Nuprl Lemma : sq_stable__ifun
∀[I:Interval]. ∀[f:I ⟶ℝ].  SqStable(ifun(f;I)) supposing icompact(I)
Proof
Definitions occuring in Statement : 
ifun: ifun(f;I), 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
interval: Interval, 
sq_stable: SqStable(P), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
prop: ℙ, 
ifun: ifun(f;I), 
icompact: icompact(I), 
and: P ∧ Q
Lemmas referenced : 
icompact_wf, 
rfun_wf, 
interval_wf, 
sq_stable__real-fun, 
left-endpoint_wf, 
right-endpoint_wf, 
icompact-is-rccint
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
productElimination, 
sqequalRule
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    SqStable(ifun(f;I))  supposing  icompact(I)
Date html generated:
2016_10_26-AM-09_48_09
Last ObjectModification:
2016_08_18-PM-02_55_07
Theory : reals
Home
Index