Nuprl Lemma : sq_stable__real-fun
∀[a,b:ℝ]. ∀[f:[a, b] ⟶ℝ].  SqStable(real-fun(f;a;b))
Proof
Definitions occuring in Statement : 
real-fun: real-fun(f;a;b)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
real-fun: real-fun(f;a;b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
Lemmas referenced : 
sq_stable__all, 
real_wf, 
i-member_wf, 
rccint_wf, 
all_wf, 
req_wf, 
sq_stable__req, 
set_wf, 
req_witness, 
squash_wf, 
rfun_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
dependent_functionElimination, 
functionEquality, 
applyEquality, 
dependent_set_memberEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[a,b:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    SqStable(real-fun(f;a;b))
Date html generated:
2016_10_26-AM-09_47_30
Last ObjectModification:
2016_08_18-PM-01_51_14
Theory : reals
Home
Index