Step
*
2
of Lemma
inverse-of-strict-increasing-function
1. I : Interval
2. f : I ⟶ℝ
3. J : Interval
4. g : x:{x:ℝ| x ∈ J} ⟶ {x:ℝ| x ∈ I}
5. ∀t:{t:ℝ| t ∈ I} . (f t ∈ J)
6. ∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f x) < (f y)))
7. ∀x,y:{t:ℝ| t ∈ I} . ((x = y)
⇒ ((f x) = (f y)))
8. ∀x:{x:ℝ| x ∈ J} . ((f (g x)) = x)
9. ∀x:{x:ℝ| x ∈ I} . ((g (f x)) = x)
10. x : {x:ℝ| x ∈ J}
11. y : {x:ℝ| x ∈ J}
12. x < y
⊢ (g x) < (g y)
BY
{ ((Assert (f (g x)) < (f (g y)) BY
(RWO "8" 0 THEN Auto))
THEN (Assert ⌜g x ≠ g y⌝⋅ THENM (D -1 THEN Auto THEN FHyp 6 [-1] THEN Auto))
) }
1
.....assertion.....
1. I : Interval
2. f : I ⟶ℝ
3. J : Interval
4. g : x:{x:ℝ| x ∈ J} ⟶ {x:ℝ| x ∈ I}
5. ∀t:{t:ℝ| t ∈ I} . (f t ∈ J)
6. ∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f x) < (f y)))
7. ∀x,y:{t:ℝ| t ∈ I} . ((x = y)
⇒ ((f x) = (f y)))
8. ∀x:{x:ℝ| x ∈ J} . ((f (g x)) = x)
9. ∀x:{x:ℝ| x ∈ I} . ((g (f x)) = x)
10. x : {x:ℝ| x ∈ J}
11. y : {x:ℝ| x ∈ J}
12. x < y
13. (f (g x)) < (f (g y))
⊢ g x ≠ g y
Latex:
Latex:
1. I : Interval
2. f : I {}\mrightarrow{}\mBbbR{}
3. J : Interval
4. g : x:\{x:\mBbbR{}| x \mmember{} J\} {}\mrightarrow{} \{x:\mBbbR{}| x \mmember{} I\}
5. \mforall{}t:\{t:\mBbbR{}| t \mmember{} I\} . (f t \mmember{} J)
6. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x < y) {}\mRightarrow{} ((f x) < (f y)))
7. \mforall{}x,y:\{t:\mBbbR{}| t \mmember{} I\} . ((x = y) {}\mRightarrow{} ((f x) = (f y)))
8. \mforall{}x:\{x:\mBbbR{}| x \mmember{} J\} . ((f (g x)) = x)
9. \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . ((g (f x)) = x)
10. x : \{x:\mBbbR{}| x \mmember{} J\}
11. y : \{x:\mBbbR{}| x \mmember{} J\}
12. x < y
\mvdash{} (g x) < (g y)
By
Latex:
((Assert (f (g x)) < (f (g y)) BY
(RWO "8" 0 THEN Auto))
THEN (Assert \mkleeneopen{}g x \mneq{} g y\mkleeneclose{}\mcdot{} THENM (D -1 THEN Auto THEN FHyp 6 [-1] THEN Auto))
)
Home
Index