Nuprl Lemma : inverse-of-strict-increasing-function
∀I:Interval. ∀f:I ⟶ℝ. ∀J:Interval. ∀g:x:{x:ℝ| x ∈ J}  ⟶ {x:ℝ| x ∈ I} .
  ((∀t:{t:ℝ| t ∈ I} . (f t ∈ J))
  
⇒ (∀x,y:{x:ℝ| x ∈ I} .  ((x < y) 
⇒ ((f x) < (f y))))
  
⇒ (∀x,y:{t:ℝ| t ∈ I} .  ((x = y) 
⇒ ((f x) = (f y))))
  
⇒ (∀x:{x:ℝ| x ∈ J} . ((f (g x)) = x))
  
⇒ ((∀x:{x:ℝ| x ∈ I} . ((g (f x)) = x))
     ∧ (∀x,y:{x:ℝ| x ∈ J} .  ((x < y) 
⇒ ((g x) < (g y))))
     ∧ (∀x,y:{t:ℝ| t ∈ J} .  ((x = y) 
⇒ ((g x) = (g y))))))
Proof
Definitions occuring in Statement : 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
rless: x < y
, 
req: x = y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
not: ¬A
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
subinterval: I ⊆ J 
, 
top: Top
, 
real-fun: real-fun(f;a;b)
, 
real-sfun: real-sfun(f;a;b)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
rfun_wf, 
interval_wf, 
all_wf, 
req_wf, 
rless_wf, 
i-member_wf, 
real_wf, 
set_wf, 
rneq_wf, 
rless_irreflexivity, 
rleq_weakening, 
rless_transitivity1, 
req_inversion, 
not-rneq, 
rleq_weakening_rless, 
rless_transitivity2, 
rless_functionality, 
not-rless, 
rleq_wf, 
rcc-subinterval, 
equal_wf, 
sq_stable__i-member, 
rccint_wf, 
rfun_subtype, 
real-fun-implies-sfun, 
member_rccint_lemma, 
subtype_rel_sets, 
rleq_weakening_equal, 
req_functionality
Rules used in proof : 
functionEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
setEquality, 
because_Cache, 
rename, 
setElimination, 
independent_pairFormation, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_functionElimination, 
voidElimination, 
independent_functionElimination, 
unionElimination, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
voidEquality, 
isect_memberEquality, 
inlFormation, 
productEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}J:Interval.  \mforall{}g:x:\{x:\mBbbR{}|  x  \mmember{}  J\}    {}\mrightarrow{}  \{x:\mBbbR{}|  x  \mmember{}  I\}  .
    ((\mforall{}t:\{t:\mBbbR{}|  t  \mmember{}  I\}  .  (f  t  \mmember{}  J))
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  <  y)  {}\mRightarrow{}  ((f  x)  <  (f  y))))
    {}\mRightarrow{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y))))
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  J\}  .  ((f  (g  x))  =  x))
    {}\mRightarrow{}  ((\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  ((g  (f  x))  =  x))
          \mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  J\}  .    ((x  <  y)  {}\mRightarrow{}  ((g  x)  <  (g  y))))
          \mwedge{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  J\}  .    ((x  =  y)  {}\mRightarrow{}  ((g  x)  =  (g  y))))))
Date html generated:
2017_10_03-AM-10_32_40
Last ObjectModification:
2017_07_30-AM-11_46_50
Theory : reals
Home
Index