Step
*
of Lemma
ipolynomial-nonneg
∀[p:iPolynomial()]. ∀f:ℤ ⟶ ℝ. (r0 ≤ real_term_value(f;ipolynomial-term(p))) supposing ↑nonneg-poly(p)
BY
{ (Auto THEN (RWO "assert-nonneg-poly" (-2) THENA Auto) THEN D 1 THEN Thin 2 THEN ListInd 1) }
1
1. f : ℤ ⟶ ℝ
⊢ (∀m∈[].↑nonneg-monomial(m))
⇒ (r0 ≤ real_term_value(f;ipolynomial-term([])))
2
1. f : ℤ ⟶ ℝ
2. u : iMonomial()
3. v : iMonomial() List
4. (∀m∈v.↑nonneg-monomial(m))
⇒ (r0 ≤ real_term_value(f;ipolynomial-term(v)))
⊢ (∀m∈[u / v].↑nonneg-monomial(m))
⇒ (r0 ≤ real_term_value(f;ipolynomial-term([u / v])))
Latex:
Latex:
\mforall{}[p:iPolynomial()]
\mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbR{}. (r0 \mleq{} real\_term\_value(f;ipolynomial-term(p))) supposing \muparrow{}nonneg-poly(p)
By
Latex:
(Auto THEN (RWO "assert-nonneg-poly" (-2) THENA Auto) THEN D 1 THEN Thin 2 THEN ListInd 1)
Home
Index