Nuprl Lemma : ipolynomial-nonneg
∀[p:iPolynomial()]. ∀f:ℤ ⟶ ℝ. (r0 ≤ real_term_value(f;ipolynomial-term(p))) supposing ↑nonneg-poly(p)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
real_term_value: real_term_value(f;t)
, 
int-to-real: r(n)
, 
real: ℝ
, 
nonneg-poly: nonneg-poly(p)
, 
ipolynomial-term: ipolynomial-term(p)
, 
iPolynomial: iPolynomial()
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iPolynomial: iPolynomial()
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
or: P ∨ Q
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
ipolynomial-term: ipolynomial-term(p)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
req_int_terms: t1 ≡ t2
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
Lemmas referenced : 
assert-nonneg-poly, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_witness_for_triv, 
iMonomial_wf, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
le_wf, 
istype-nat, 
real_wf, 
istype-assert, 
nonneg-poly_wf, 
iPolynomial_wf, 
null_nil_lemma, 
real_term_value_const_lemma, 
rleq_weakening_equal, 
int-to-real_wf, 
l_all_wf2, 
nil_wf, 
assert_wf, 
nonneg-monomial_wf, 
subtype_rel_set, 
top_wf, 
void_wf, 
l_member_wf, 
l_all_cons, 
cons_wf, 
ipolynomial-term-cons-req, 
real_term_value_add_lemma, 
radd_wf, 
real_term_value_wf, 
imonomial-term_wf, 
ipolynomial-term_wf, 
rleq_functionality_wrt_implies, 
rleq_transitivity, 
radd_functionality_wrt_rleq, 
rleq_weakening, 
req_inversion, 
trivial-rleq-radd, 
imonomial-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalityIstype, 
because_Cache, 
dependent_set_memberEquality_alt, 
instantiate, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
sqequalBase, 
functionIsType, 
isectIsTypeImplies, 
voidEquality, 
functionExtensionality, 
setIsType, 
independent_pairEquality
Latex:
\mforall{}[p:iPolynomial()]
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  (r0  \mleq{}  real\_term\_value(f;ipolynomial-term(p)))  supposing  \muparrow{}nonneg-poly(p)
Date html generated:
2019_10_29-AM-10_08_21
Last ObjectModification:
2019_04_08-PM-05_34_11
Theory : reals
Home
Index