Nuprl Lemma : nonneg-poly_wf
∀[p:iPolynomial()]. (nonneg-poly(p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
nonneg-poly: nonneg-poly(p)
, 
iPolynomial: iPolynomial()
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nonneg-poly: nonneg-poly(p)
, 
iPolynomial: iPolynomial()
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
bl-all_wf, 
iMonomial_wf, 
nonneg-monomial_wf, 
l_member_wf, 
iPolynomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
Error :setIsType, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[p:iPolynomial()].  (nonneg-poly(p)  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-PM-01_35_08
Last ObjectModification:
2019_04_08-PM-05_19_48
Theory : list_1
Home
Index