Nuprl Lemma : nonneg-poly_wf

[p:iPolynomial()]. (nonneg-poly(p) ∈ 𝔹)


Proof




Definitions occuring in Statement :  nonneg-poly: nonneg-poly(p) iPolynomial: iPolynomial() bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nonneg-poly: nonneg-poly(p) iPolynomial: iPolynomial() so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  bl-all_wf iMonomial_wf nonneg-monomial_wf l_member_wf iPolynomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis setElimination rename hypothesisEquality Error :lambdaEquality_alt,  Error :setIsType,  Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:iPolynomial()].  (nonneg-poly(p)  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-PM-01_35_08
Last ObjectModification: 2019_04_08-PM-05_19_48

Theory : list_1


Home Index