Nuprl Lemma : imonomial-nonneg

[m:iMonomial()]. ∀f:ℤ ⟶ ℝ(r0 ≤ real_term_value(f;imonomial-term(m))) supposing ↑nonneg-monomial(m)


Proof




Definitions occuring in Statement :  rleq: x ≤ y real_term_value: real_term_value(f;t) int-to-real: r(n) real: nonneg-monomial: nonneg-monomial(m) imonomial-term: imonomial-term(m) iMonomial: iMonomial() assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q exists: x:A. B[x] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q guard: {T}
Lemmas referenced :  assert-nonneg-monomial imonomial-nonneg-lemma istype-int real_wf le_witness_for_triv istype-assert nonneg-monomial_wf iMonomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination isectElimination because_Cache independent_isectElimination functionIsType universeIsType sqequalRule lambdaEquality_alt equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[m:iMonomial()]
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  (r0  \mleq{}  real\_term\_value(f;imonomial-term(m)))  supposing  \muparrow{}nonneg-monomial(m)



Date html generated: 2019_10_29-AM-10_08_07
Last ObjectModification: 2019_04_08-PM-05_15_05

Theory : reals


Home Index