Nuprl Lemma : imonomial-nonneg
∀[m:iMonomial()]. ∀f:ℤ ⟶ ℝ. (r0 ≤ real_term_value(f;imonomial-term(m))) supposing ↑nonneg-monomial(m)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
real_term_value: real_term_value(f;t)
, 
int-to-real: r(n)
, 
real: ℝ
, 
nonneg-monomial: nonneg-monomial(m)
, 
imonomial-term: imonomial-term(m)
, 
iMonomial: iMonomial()
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
guard: {T}
Lemmas referenced : 
assert-nonneg-monomial, 
imonomial-nonneg-lemma, 
istype-int, 
real_wf, 
le_witness_for_triv, 
istype-assert, 
nonneg-monomial_wf, 
iMonomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
functionIsType, 
universeIsType, 
sqequalRule, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[m:iMonomial()]
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  (r0  \mleq{}  real\_term\_value(f;imonomial-term(m)))  supposing  \muparrow{}nonneg-monomial(m)
Date html generated:
2019_10_29-AM-10_08_07
Last ObjectModification:
2019_04_08-PM-05_15_05
Theory : reals
Home
Index