Nuprl Lemma : assert-nonneg-monomial
∀m:iMonomial(). ((↑nonneg-monomial(m)) ⇒ (∃m':iMonomial(). ∃k:ℕ+. (mul-monomials(m';m') = mul-monomials(m;<k, []>) ∈ iM\000Conomial())))
Proof
Definitions occuring in Statement : 
nonneg-monomial: nonneg-monomial(m), 
mul-monomials: mul-monomials(m1;m2), 
iMonomial: iMonomial(), 
nil: [], 
nat_plus: ℕ+, 
assert: ↑b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iMonomial: iMonomial(), 
nonneg-monomial: nonneg-monomial(m), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_nzero: ℤ-o, 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
int_seg: {i..j-}, 
false: False, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
less_than: a < b, 
squash: ↓T, 
cand: A c∧ B, 
not: ¬A, 
subtract: n - m, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
nat: ℕ, 
exists: ∃x:A. B[x], 
ge: i ≥ j , 
sq_stable: SqStable(P), 
cons: [a / b], 
merge-int-accum: merge-int-accum(as;bs), 
eager-accum: eager-accum(x,a.f[x; a];y;l), 
nil: [], 
it: ⋅, 
even-int-list: even-int-list(L), 
bor: p ∨bq, 
bnot: ¬bb, 
btrue: tt, 
assert: ↑b, 
rev_uimplies: rev_uimplies(P;Q), 
merge-int: merge-int(as;bs), 
label: ...$L... t, 
insert-int: insert-int(x;l), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
bool: 𝔹, 
unit: Unit, 
sorted: sorted(L), 
nat_plus: ℕ+, 
nequal: a ≠ b ∈ T , 
mul-monomials: mul-monomials(m1;m2), 
has-value: (a)↓
Lemmas referenced : 
istype-assert, 
nonneg-monomial_wf, 
iMonomial_wf, 
assert_wf, 
le_int_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
assert_of_le_int, 
even-int-list_wf, 
bfalse_wf, 
le_wf, 
istype-le, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
set_subtype_base, 
int_subtype_base, 
decidable__le, 
istype-false, 
not-le-2, 
less-iff-le, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
zero-add, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
le-add-cancel-alt, 
istype-less_than, 
subtype_rel_self, 
int_seg_properties, 
non_neg_length, 
length_wf_nat, 
istype-sqequal, 
istype-int, 
le_reflexive, 
length_wf, 
list_wf, 
not-equal-2, 
guard_wf, 
all_wf, 
sorted_wf, 
exists_wf, 
equal-wf-base, 
list_subtype_base, 
primrec-wf2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
istype-nat, 
nat_properties, 
list-cases, 
nil_wf, 
product_subtype_list, 
cons_wf, 
null_cons_lemma, 
reduce_tl_cons_lemma, 
reduce_hd_cons_lemma, 
null_nil_lemma, 
reduce_tl_nil_lemma, 
eq_int_wf, 
assert_of_eq_int, 
length_of_cons_lemma, 
two-mul, 
mul-distributes-right, 
one-mul, 
sorted-cons, 
l_all_iff, 
l_member_wf, 
l_all_wf, 
merge-int-accum-sq, 
member-merge-int, 
reduce_cons_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
merge-int-comm, 
iff_weakening_equal, 
merge-int_wf, 
list_ind_nil_lemma, 
l_all_wf_nil, 
list_ind_cons_lemma, 
l_all_cons, 
lt_int_wf, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
less_than_wf, 
less_than_anti-reflexive, 
sq_stable__all, 
select_wf, 
less_than_transitivity2, 
le_weakening2, 
le_witness_for_triv, 
minus-zero, 
nequal_wf, 
nat_plus_wf, 
mul-monomials_wf, 
int_entire_a, 
trivial-equal, 
value-type-has-value, 
int_nzero_wf, 
set-value-type, 
int-value-type, 
list-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productEquality, 
because_Cache, 
Error :isect_memberEquality_alt, 
Error :productIsType, 
independent_pairFormation, 
promote_hyp, 
voidElimination, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
imageElimination, 
addEquality, 
minusEquality, 
hypothesis_subsumption, 
Error :lambdaEquality_alt, 
intEquality, 
Error :inhabitedIsType, 
Error :dependent_pairFormation_alt, 
Error :equalityIstype, 
Error :functionIsType, 
closedConclusion, 
functionEquality, 
setEquality, 
baseApply, 
baseClosed, 
Error :setIsType, 
imageMemberEquality, 
multiplyEquality, 
voidEquality, 
sqequalBase, 
Error :inlFormation_alt, 
applyLambdaEquality, 
universeEquality, 
equalityElimination, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
Error :functionIsTypeImplies, 
independent_pairEquality, 
callbyvalueReduce
Latex:
\mforall{}m:iMonomial()
    ((\muparrow{}nonneg-monomial(m))  {}\mRightarrow{}  (\mexists{}m':iMonomial().  \mexists{}k:\mBbbN{}\msupplus{}.  (mul-monomials(m';m')  =  mul-monomials(m;<k,  []>\000C))))
Date html generated:
2019_06_20-PM-00_46_00
Last ObjectModification:
2019_04_08-PM-04_00_11
Theory : omega
Home
Index