Nuprl Lemma : assert-nonneg-monomial

m:iMonomial(). ((↑nonneg-monomial(m))  (∃m':iMonomial(). ∃k:ℕ+(mul-monomials(m';m') mul-monomials(m;<k, []>) ∈ iM\000Conomial())))


Proof




Definitions occuring in Statement :  nonneg-monomial: nonneg-monomial(m) mul-monomials: mul-monomials(m1;m2) iMonomial: iMonomial() nil: [] nat_plus: + assert: b all: x:A. B[x] exists: x:A. B[x] implies:  Q pair: <a, b> equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iMonomial: iMonomial() nonneg-monomial: nonneg-monomial(m) uall: [x:A]. B[x] member: t ∈ T int_nzero: -o or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q bfalse: ff band: p ∧b q ifthenelse: if then else fi  prop: iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} false: False lelt: i ≤ j < k decidable: Dec(P) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T cand: c∧ B not: ¬A subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True nat: exists: x:A. B[x] ge: i ≥  sq_stable: SqStable(P) cons: [a b] merge-int-accum: merge-int-accum(as;bs) eager-accum: eager-accum(x,a.f[x; a];y;l) nil: [] it: even-int-list: even-int-list(L) bor: p ∨bq bnot: ¬bb btrue: tt assert: b rev_uimplies: rev_uimplies(P;Q) merge-int: merge-int(as;bs) label: ...$L... t insert-int: insert-int(x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit sorted: sorted(L) nat_plus: + nequal: a ≠ b ∈  mul-monomials: mul-monomials(m1;m2) has-value: (a)↓
Lemmas referenced :  istype-assert nonneg-monomial_wf iMonomial_wf assert_wf le_int_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert_of_le_int even-int-list_wf bfalse_wf le_wf istype-le iff_transitivity iff_weakening_uiff assert_of_band less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtract_wf set_subtype_base int_subtype_base decidable__le istype-false not-le-2 less-iff-le le_antisymmetry_iff condition-implies-le minus-add istype-void minus-minus minus-one-mul add-swap minus-one-mul-top add-commutes zero-add add_functionality_wrt_le add-associates add-zero le-add-cancel decidable__lt not-lt-2 le-add-cancel-alt istype-less_than subtype_rel_self int_seg_properties non_neg_length length_wf_nat istype-sqequal istype-int le_reflexive length_wf list_wf not-equal-2 guard_wf all_wf sorted_wf exists_wf equal-wf-base list_subtype_base primrec-wf2 sq_stable__le add-mul-special zero-mul istype-nat nat_properties list-cases nil_wf product_subtype_list cons_wf null_cons_lemma reduce_tl_cons_lemma reduce_hd_cons_lemma null_nil_lemma reduce_tl_nil_lemma eq_int_wf assert_of_eq_int length_of_cons_lemma two-mul mul-distributes-right one-mul sorted-cons l_all_iff l_member_wf l_all_wf merge-int-accum-sq member-merge-int reduce_cons_lemma equal_wf squash_wf true_wf istype-universe merge-int-comm iff_weakening_equal merge-int_wf list_ind_nil_lemma l_all_wf_nil list_ind_cons_lemma l_all_cons lt_int_wf assert_of_lt_int istype-top eqff_to_assert bool_cases_sqequal assert-bnot less_than_wf less_than_anti-reflexive sq_stable__all select_wf less_than_transitivity2 le_weakening2 le_witness_for_triv minus-zero nequal_wf nat_plus_wf mul-monomials_wf int_entire_a trivial-equal value-type-has-value int_nzero_wf set-value-type int-value-type list-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis Error :universeIsType,  natural_numberEquality setElimination rename dependent_functionElimination unionElimination instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination productEquality because_Cache Error :isect_memberEquality_alt,  Error :productIsType,  independent_pairFormation promote_hyp voidElimination applyEquality Error :dependent_set_memberEquality_alt,  imageElimination addEquality minusEquality hypothesis_subsumption Error :lambdaEquality_alt,  intEquality Error :inhabitedIsType,  Error :dependent_pairFormation_alt,  Error :equalityIstype,  Error :functionIsType,  closedConclusion functionEquality setEquality baseApply baseClosed Error :setIsType,  imageMemberEquality multiplyEquality voidEquality sqequalBase Error :inlFormation_alt,  applyLambdaEquality universeEquality equalityElimination lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isectIsTypeImplies,  Error :functionIsTypeImplies,  independent_pairEquality callbyvalueReduce

Latex:
\mforall{}m:iMonomial()
    ((\muparrow{}nonneg-monomial(m))  {}\mRightarrow{}  (\mexists{}m':iMonomial().  \mexists{}k:\mBbbN{}\msupplus{}.  (mul-monomials(m';m')  =  mul-monomials(m;<k,  []>\000C))))



Date html generated: 2019_06_20-PM-00_46_00
Last ObjectModification: 2019_04_08-PM-04_00_11

Theory : omega


Home Index