Nuprl Lemma : assert-nonneg-poly

[p:iPolynomial()]. uiff(↑nonneg-poly(p);(∀m∈p.↑nonneg-monomial(m)))


Proof




Definitions occuring in Statement :  nonneg-poly: nonneg-poly(p) nonneg-monomial: nonneg-monomial(m) iPolynomial: iPolynomial() l_all: (∀x∈L.P[x]) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nonneg-poly: nonneg-poly(p) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a l_all: (∀x∈L.P[x]) all: x:A. B[x] iPolynomial: iPolynomial() int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert_witness nonneg-monomial_wf select_wf iMonomial_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma l_all_wf assert_wf l_member_wf iff_weakening_uiff bl-all_wf assert-bl-all istype-assert nonneg-poly_wf iPolynomial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation hypothesis sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination setElimination rename because_Cache independent_isectElimination productElimination imageElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :setIsType,  promote_hyp independent_pairEquality Error :isectIsTypeImplies

Latex:
\mforall{}[p:iPolynomial()].  uiff(\muparrow{}nonneg-poly(p);(\mforall{}m\mmember{}p.\muparrow{}nonneg-monomial(m)))



Date html generated: 2019_06_20-PM-01_35_16
Last ObjectModification: 2019_04_08-PM-05_22_00

Theory : list_1


Home Index